

 PHP

i

About the Tutorial

The PHP Hypertext Preprocessor (PHP) is a programming language that allows web

developers to create dynamic content that interacts with databases. PHP is basically used

for developing web-based software applications. This tutorial will help you understand the

basics of PHP and how to put it in practice.

Audience

This tutorial has been designed to meet the requirements of all those readers who are

keen to learn the basics of PHP.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of computer

programming, Internet, Database, and MySQL.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

 PHP

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

PART 1: LEARNING PHP ... 1

 PHP ─ Introduction .. 2
Common Uses of PHP .. 2
Characteristics of PHP ... 3
"Hello World" Script in PHP ... 3

 PHP ─ Environment Setup ... 4
PHP Parser Installation .. 4
PHP Installation on Linux or Unix with Apache ... 4
PHP Installation on Mac OS X with Apache ... 6
PHP Installation on Windows NT/2000/XP with IIS ... 7
PHP Installation on Windows NT/2000/XP with Apache ... 8
Apache Configuration for PHP ... 10
PHP.INI file Configuration .. 11

 PHP ─ Syntax Overview ... 15
Escaping to PHP ... 15
Commenting PHP Code ... 16
PHP is whitespace insensitive .. 16
PHP is case sensitive .. 17
Statements are expressions terminated by semicolons .. 17
Expressions are combinations of tokens ... 17
Braces make blocks ... 17
Running PHP Script from Command Prompt ... 18

 PHP ─ Variable Types .. 19
Integers .. 20
Doubles .. 20
Boolean .. 20
NULL .. 21
Strings .. 21
Variable Naming .. 24
PHP – Variables .. 24
PHP Local Variables ... 24
PHP Function Parameters .. 25
PHP Global Variables ... 25
PHP Static Variables ... 26

 PHP ─ Constants .. 27

 PHP ─ Operator Types ... 29
Arithmetic Operators... 29

 PHP

iii

Comparison Operators .. 31
Logical Operators ... 33
Assignment Operators ... 35
Conditional Operator ... 37
Operators Categories .. 38
Precedence of PHP Operators ... 38

 PHP ─ Decision Making ... 40
The If...Else Statement... 40
The ElseIf Statement.. 41
The Switch Statement ... 42

 PHP ─ Loop Types .. 45
The for loop statement .. 45
The while loop statement .. 46
The do...while loop statement .. 47
The foreach loop statement .. 48
The break statement ... 48
The continue statement .. 50

 PHP ─ Arrays ... 52
Numeric Array ... 52
Associative Arrays .. 53
Multidimensional Arrays ... 54

 PHP ─ Strings ... 57
String Concatenation Operator ... 58
Using the strlen() function ... 58
Using the strpos() function .. 59

 PHP ─ Web Concepts ... 60
Identifying Browser & Platform ... 60
Display Images Randomly .. 61
Using HTML Forms ... 62
Browser Redirection .. 63
Displaying "File Download" Dialog Box ... 64

 PHP ─ GET and POST Methods .. 66
The GET Method .. 66
The POST Method .. 67
The $_REQUEST variable ... 68

 PHp ─ File Inclusion ... 70
The include() Function ... 70
The require() Function ... 71

 PHP ─ Files & I/O ... 72
Opening and Closing Files .. 72
Reading a file ... 73
Writing a File ... 74

 PHP ─ Functions .. 76
Creating PHP Function ... 76
PHP Functions with Parameters .. 77
Passing Arguments by Reference .. 77

 PHP

iv

PHP Functions returning value .. 78
Setting Default Values for Function Parameters ... 79
Dynamic Function Calls .. 80

 PHP ─ Cookies ... 81
The Anatomy of a Cookie .. 81
Setting Cookies with PHP... 82
Accessing Cookies with PHP .. 83
Deleting Cookie with PHP .. 84

 PHP ─ Sessions .. 85
Starting a PHP Session ... 85
Destroying a PHP Session .. 87
Turning on Auto Session .. 87
Sessions without cookies ... 87

 PHP ─ Sending Emails .. 89
Sending plain text email .. 89
Sending HTML email .. 91
Sending attachments with email ... 92

 PHP ─ File Uploading ... 95
Creating an Upload Form .. 95
Creating an upload script .. 96

 PHP ─ Coding Standard ... 98

PART 2: ADVANCED PHP ... 101

 PHP ─ Predefined Variables ... 102
PHP Superglobals ... 102
Server variables: $_SERVER ... 103

 PHP ─ Regular Expression .. 106
POSIX Regular Expressions .. 106
PHP's Regexp POSIX Functions .. 108
PHP ─ Function ereg() .. 108
PHP ─ Function ereg_replace() .. 110
PHP ─ Function eregi() ... 111
PHP ─ Function eregi_replace() ... 112
PHP ─ Function split() .. 113
PHP ─ Function spliti() ... 114
PHP ─ Function sql_regcase() .. 115
PERL Style Regular Expressions ... 115
PHP's Regexp PERL Compatible Functions .. 117
PHP ─ Function preg_match() .. 117
PHP ─ Function preg_match_all() .. 118
PHP ─ Function preg_replace() .. 119
PHP ─ Function preg_split() ... 120
PHP ─ Function preg_grep() .. 121
PHP ─ Function preg_quote() .. 122

 PHP ─ Error and Exception Handling.. 124
Using die() function ... 124

 PHP

v

Defining Custom Error Handling Function ... 124
Exceptions Handling .. 127

 PHP ─ Bugs Debugging .. 129

 PHP ─ Date and Time .. 131
Getting the Time Stamp with time() .. 131
Converting a Time Stamp with getdate() .. 131
Converting a Time Stamp with date() .. 133

 PHP ─ PHP and MySQL .. 136
What you should already have? .. 136
Connecting to MySQL Database .. 137
Create MySQL Database Using PHP ... 138
Delete MySQL Database Using PHP ... 143
Insert Data to MySQL Database .. 144
Retrieving Data from MySQL Database ... 148
Using Paging through PHP ... 152
Updating Data into MySQL Database .. 154
Deleting Data from MySQL Database .. 157
Using PHP to Backup MySQL Database ... 159

 PHP ─ PHP and AJAX ... 162
What is AJAX ? ... 162
PHP and AJAX Example .. 162
Client Side HTML file.. 163
Server Side PHP file ... 165

 PHP ─ PHP and XML .. 167
HTML list that's not valid XML ... 167
HTML list that is valid XML .. 167
Parsing an XML Document .. 167
Generating an XML Document .. 169

 PHP ─ Object Oriented Programming .. 170
Object Oriented Concepts ... 170
Defining PHP Classes ... 171
Creating Objects in PHP ... 172
Calling Member Functions ... 172
Constructor Functions ... 173
Destructor .. 174
Inheritance .. 174
Function Overriding ... 175
Public Members ... 175
Private members ... 175
Protected members ... 176
Interfaces ... 177
Constants ... 177
Abstract Classes ... 177
Static Keyword ... 178
Final Keyword .. 178

 PHP ─ PHP for C Developers .. 181
Similarities ... 181
Differences .. 181

 PHP

vi

 PHP ─ PHP for PERL Developers .. 183
Similarities ... 183
Differences .. 183

PART 3: FUNCTION REFERENCE... 185

 PHP ─ Function Reference ... 186

 PHP

1

Part 1: Learning PHP

 PHP

2

PHP started out as a small open source project that evolved as more and more people

found out how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back

in 1994.

 PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

 PHP is a server side scripting language that is embedded in HTML. It is used to

manage dynamic content, databases, session tracking, even build entire e-

commerce sites.

 It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP is pleasingly zippy in its execution, especially when compiled as an Apache

module on the Unix side. The MySQL server, once started, executes even very

complex queries with huge result sets in record-setting time.

 PHP supports a large number of major protocols such as POP3, IMAP, and LDAP.

PHP4 added support for Java and distributed object architectures (COM and

CORBA), making n-tier development a possibility for the first time.

 PHP is forgiving: PHP language tries to be as forgiving as possible.

 PHP Syntax is C-Like.

Common Uses of PHP

PHP performs system functions, i.e. from files on a system it can create, open, read, write,

and close them. The other uses of PHP are:

 PHP can handle forms, i.e. gather data from files, save data to a file, thru email

you can send data, return data to the user.

 You add, delete, modify elements within your database thru PHP.

 Access cookies variables and set cookies.

 Using PHP, you can restrict users to access some pages of your website.

 It can encrypt data.

 PHP ─ Introduction

 PHP

3

Characteristics of PHP

Five important characteristics make PHP's practical nature possible:

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

"Hello World" Script in PHP

To get a feel of PHP, first start with simple PHP scripts. Since "Hello, World!" is an essential

example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your normal

HTML (or XHTML if you're cutting-edge) you'll have PHP statements like this:

<html>
<head>
<title>Hello World</title>
<body>
 <?php echo "Hello, World!";?>
</body>
</html>

It will produce the following result:

Hello, World!

If you examine the HTML output of the above example, you'll notice that the PHP code is

not present in the file sent from the server to your Web browser. All of the PHP present in

the Web page is processed and stripped from the page; the only thing returned to the

client from the Web server is pure HTML output.

All PHP code must be included inside one of the three special markup tags ate are

recognized by the PHP Parser.

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language="php"> PHP code goes here </script>

Most common tag is the <?php...?> and we will also use the same tag in our tutorial.

From the next chapter, we will start with PHP Environment Setup on your machine and

then we will dig out almost all concepts related to PHP to make you comfortable with the

PHP language.

 PHP

4

In order to develop and run PHP Web pages, three vital components need to be installed

on your computer system.

Web Server - PHP will work with virtually all Web Server software, including Microsoft's

Internet Information Server (IIS) but then most often used is freely available Apache

Server. Download Apache for free here: http://httpd.apache.org/download.cgi

Database - PHP will work with virtually all database software, including Oracle and Sybase

but most commonly used is freely available MySQL database. Download MySQL for free

here: http://www.mysql.com/downloads/index.html

PHP Parser - In order to process PHP script instructions, a parser must be installed to

generate HTML output that can be sent to the Web Browser. This tutorial will guide you

how to install PHP parser on your computer.

PHP Parser Installation

Before you proceed, it is important to make sure that you have a proper environment

setup on your machine to develop your web programs using PHP.

Type the following address into your browser's address box.

http://127.0.0.1/info.php

If this displays a page showing your PHP installation related information, then it means

you have PHP and Webserver installed properly. Otherwise you have to follow given

procedure to install PHP on your computer.

This section will guide you to install and configure PHP over the following four platforms:

 PHP Installation on Linux or Unix with Apache

 PHP Installation on Mac OS X with Apache

 PHP Installation on Windows NT/2000/XP with IIS

 PHP Installation on Windows NT/2000/XP with Apache

PHP Installation on Linux or Unix with Apache

If you plan to install PHP on Linux or any other variant of Unix, then here is the list of

prerequisites:

 The PHP source distribution http://www.php.net/downloads.php

The latest Apache source distribution

http://httpd.apache.org/download.cgi

 PHP ─ Environment Setup

http://httpd.apache.org/download.cgi
http://www.mysql.com/downloads/index.html
http://www.tutorialspoint.com/php/php_installation_linux.htm
http://www.tutorialspoint.com/php/php_installation_mac.htm
http://www.tutorialspoint.com/php/php_installation_windows_iis.htm
http://www.tutorialspoint.com/php/php_installation_windows_apache.htm
http://localhost/php/php_installation_linux.htm
http://www.php.net/downloads.php
http://httpd.apache.org/download.cgi

 PHP

5

 A working PHP-supported database, if you plan to use one (For example MySQL,

Oracle etc.)

 Any other supported software to which PHP must connect (mail server, BCMath

package, JDK, and so forth)

 An ANSI C compiler

 Gnu make utility - you can freely download it at

http://www.gnu.org/software/make

Now here are the steps to install Apache and PHP5 on your Linux or Unix machine. If your

PHP or Apache versions are different, then please take care accordingly.

 If you haven't already done so, unzip and untar your Apache source distribution.

Unless you have a reason to do otherwise, /usr/local is the standard place.

gunzip -c apache_1.3.x.tar.gz
tar -xvf apache_1.3.x.tar

 Build the apache Server as follows

cd apache_1.3.x
./configure --prefix=/usr/local/apache --enable-so
make
make install

 Unzip and untar your PHP source distribution. Unless you have a reason to do

otherwise, /usr/local is the standard place.

gunzip -c php-5.x.tar.gz
tar -xvf php-5.x.tar
cd php-5.x

 Configure and Build your PHP, assuming you are using MySQL database.

./configure --with-apxs=/usr/sbin/apxs \
 --with-mysql=/usr/bin/mysql
make
make install

 Install the php.ini file. Edit this file to get configuration directives:

cd ../../php-5.x
cp php.ini-dist /usr/local/lib/php.ini

 Tell your Apache server where you want to serve files from, and what extension(s)

you want to identify PHP files. .php is the standard, but you can use .html, .phtml,

or whatever you want.

o Go to your HTTP configuration files (/usr/local/apache/conf or whatever

your path is)

o Open httpd.conf with a text editor.

http://www.gnu.org/software/make

 PHP

6

o Search for the word DocumentRoot (which should appear twice), and

change both paths to the directory you want to serve files out of (in our

case, /home/httpd). We recommend a home directory rather than the

default /usr/local/apache/htdocs because it is more secure, but it doesn.t

have to be in a home directory. You will keep all your PHP files in this

directory.

 Add at least one PHP extension directive, as shown in the first line of code that

follows. In the second line, we.ve also added a second handler to have all HTML

files parsed as PHP

AddType application/x-httpd-php .php

AddType application/x-httpd-php .html

 Restart your server. Every time you change your HTTP configuration or php.ini files,

you must stop and start your server again.

cd ../bin

./apachectl start

 Set the document root directory permissions to world-executable. The actual PHP

files in the directory need only be world-readable (644). If necessary, replace

/home/httpd with your document root below:

chmod 755 /home/httpd/html/php

 Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your Web server's

document root as info.php.

 Start any Web browser and browse the file. You must always use an HTTP request

(http://www.testdomain.com/info.php or http://localhost/info.php or

http://127.0.0.1/info.php) rather than a filename (/home/httpd/info.php) for the

file to be parsed correctly

You should see a long table of information about your new PHP installation message

Congratulations!

PHP Installation on Mac OS X with Apache

Mac users have the choice of either a binary or a source installation. In fact, your OS X

probably came with Apache and PHP preinstalled. This is likely to be quite an old build,

and it probably lacks many of the less common extensions.

However, if all you want is a quick Apache + PHP + MySQL/PostgreSQL setup on your

laptop, this is certainly the easiest way to fly. All you need to do is edit your Apache

configuration file and turn on the Web server.

So just follow the steps given below:

 Open the Apache config file in a text editor as root.

sudo open -a TextEdit /etc/httpd/httpd.conf

http://localhost/php/php_installation_mac.htm

 PHP

7

 Edit the file. Uncomment the following lines:

Load Module php5_module

AddModule mod_php5.c

AddType application/x-httpd-php .php

 You may also want to uncomment the <Directory /home/*/Sites> block or

otherwise tell Apache which directory to serve out of.

 Restart the Web server

sudo apachectl graceful

 Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your Web server's

document root as info.php.

 Start any Web browser and browse the file.you must always use an HTTP request

(http://www.testdomain.com/info.php or http://localhost/info.php or

http://127.0.0.1/info.php) rather than a filename (/home/httpd/info.php) for the

file to be parsed correctly

You should see a long table of information about your new PHP installation message

Congratulations!

PHP Installation on Windows NT/2000/XP with IIS

The Windows server installation of PHP running IIS is much simpler than on Unix, since it

involves a precompiled binary rather than a source build.

If you plan to install PHP over Windows, then here is the list of prerequisites:

 A working PHP-supported Web server. Under previous versions of PHP, IIS/PWS

was the easiest choice because a module version of PHP was available for it; but

PHP now has added a much wider selection of modules for Windows.

 A correctly installed PHP-supported database like MySQL or Oracle etc. (if you plan

to use one)

 The PHP Windows binary distribution (download it atwww.php.net/downloads.php)

 A utility to unzip files (search http://download.cnet.com for PC file compression

utilities)

Now here are the steps to install Apache and PHP5 on your Windows machine. If your PHP

version is different, then please take care accordingly.

 Extract the binary archive using your unzip utility; C:\PHP is a common location.

 Copy some .dll files from your PHP directory to your systems directory (usually

C:\Winnt\System32). You need php5ts.dll for every case. You will also probably

need to copy the file corresponding to your Web server module -

C:\PHP\Sapi\php5isapi.dll. It's possible you will also need others from the dlls

subfolder - but start with the two mentioned above and add more if you need them.

http://localhost/php/php_installation_windows_iis.htm
http://www.php.net/downloads.php

 PHP

8

 Copy either php.ini-dist or php.ini-recommended (preferably the latter) to your

Windows directory (C:\Winnt or C:\Winnt40), and rename it php.ini. Open this file

in a text editor (for example, Notepad). Edit this file to get configuration directives;

We highly recommend new users set error reporting to E_ALL on their development

machines at this point. For now, the most important thing is the doc_root directive

under the Paths and Directories section. make sure this matches your IIS Inetpub

folder (or wherever you plan to serve out of).

 Stop and restart the WWW service. Go to the Start menu -> Settings -> Control

Panel -> Services. Scroll down the list to IIS Admin Service. Select it and click Stop.

After it stops, select World Wide Web Publishing Service and click Start. Stopping

and restarting the service from within Internet Service Manager will not suffice.

Since this is Windows, you may also wish to reboot.

 Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your Web server's

document root as info.php.

 Start any Web browser and browse the file.you must always use an HTTP request

(http://www.testdomain.com/info.php or http://localhost/info.php or

http://127.0.0.1/info.php) rather than a filename (/home/httpd/info.php) for the

file to be parsed correctly

You should see a long table of information about your new PHP installation message

Congratulations!

PHP Installation on Windows NT/2000/XP with Apache

To install Apache with PHP 5 on Windows follow the following steps. If your PHP and Apache

versions are different, then please take care accordingly.

 Download Apache server from www.apache.org/dist/httpd/binaries/win32. You

want the current stable release version with the no_src.msi extension. Double-click

the installer file to install; C:\Program Files is a common location. The installer will

also ask you whether you want to run Apache as a service or from the command

line or DOS prompt. We recommend you do not install as a service, as this may

cause problems with startup.

 Extract the PHP binary archive using your unzip utility; C:\PHP is a common

location.

 Copy some .dll files from your PHP directory to your system directory (usually

C:\Windows). You need php5ts.dll for every case. You will also probably need to

copy the file corresponding to your Web server module -

C:\PHP\Sapi\php5apache.dll. to your Apache modules directory. It's possible that

you will also need others from the dlls subfolder, but start with the two mentioned

previously and add more if you need them.

 Copy either php.ini-dist or php.ini-recommended (preferably the latter) to your

Windows directory, and rename it php.ini. Open this file in a text editor (for

example, Notepad). Edit this file to get configuration directives; At this point, we

highly recommend that new users set error reporting to E_ALL on their

development machines.

http://localhost/php/php_installation_windows_apache.htm

 PHP

9

 Tell your Apache server where you want to serve files from and what extension(s)

you want to identify PHP files (.php is the standard, but you can use .html, .phtml,

or whatever you want). Go to your HTTP configuration files (C:\Program

Files\Apache Group\Apache\conf or whatever your path is), and open httpd.conf

with a text editor. Search for the word DocumentRoot (which should appear twice)

and change both paths to the directory you want to serve files out of. (The default

is C:\Program Files\Apache Group\Apache\htdocs.). Add at least one PHP extension

directive as shown in the first line of the following code:

LoadModule php5_module modules/php5apache.dll

AddType application/x-httpd-php .php .phtml

 You may also need to add the following line:

AddModule mod_php5.c

 Stop and restart the WWW service. Go to the Start menu -> Settings -> Control

Panel -> Services. Scroll down the list to IIS Admin Service. Select it and click Stop.

After it stops, select World Wide Web Publishing Service and click Start. Stopping

and restarting the service from within Internet Service Manager will not suffice.

Since this is Windows, you may also wish to reboot.

 Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your Web server's

document root as info.php.

 Start any Web browser and browse the file.you must always use an HTTP request

(http://www.testdomain.com/info.php or http://localhost/info.php or

http://127.0.0.1/info.php) rather than a filename (/home/httpd/info.php) for the

file to be parsed correctly

You should see a long table of information about your new PHP installation message

Congratulations!

Apache Configuration

If you are using Apache as a Web Server, then this section will guide you to edit Apache

Configuration Files.

PHP.INI File Configuration

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality.

Just Check it here: PHP.INI File Configuration

Windows IIS Configuration

To configure IIS on your Windows machine you can refer your IIS Reference Manual

shipped along with IIS.

http://localhost/php/php_ini_configuration.htm

 PHP

10

Apache Configuration for PHP

Apache uses httpd.conf file for global settings, and the .htaccess file for per-directory

access settings. Older versions of Apache split up httpd.conf into three files (access.conf,

httpd.conf, and srm.conf), and some users still prefer this arrangement.

Apache server has a very powerful, but slightly complex, configuration system of its own.

Learn more about it at the Apache Web site: www.apache.org

The following section describes settings in httpd.conf that affect PHP directly and cannot

be set elsewhere. If you have standard installation, then httpd.conf will be found at

/etc/httpd/conf:

Timeout

This value sets the default number of seconds before any HTTP request will time out. If

you set PHP's max_execution_time to longer than this value, PHP will keep grinding away

but the user may see a 404 error. In safe mode, this value will be ignored; you must use

the timeout value in php.ini instead

DocumentRoot

DocumentRoot designates the root directory for all HTTP processes on that server. It looks

something like this on Unix:

DocumentRoot ./usr/local/apache_1.3.6/htdocs.

You can choose any directory as document root.

AddType

The PHP MIME type needs to be set here for PHP files to be parsed. Remember that you

can associate any file extension with PHP like .php3, .php5 or .htm.

AddType application/x-httpd-php .php

AddType application/x-httpd-phps .phps

AddType application/x-httpd-php3 .php3 .phtml

AddType application/x-httpd-php .html

Action

You must uncomment this line for the Windows apxs module version of Apache with shared

object support:

LoadModule php4_module modules/php4apache.dll

or on Unix flavors:

LoadModule php4_module modules/mod_php.so

http://www.apache.org/

 PHP

11

AddModule

You must uncomment this line for the static module version of Apache.

AddModule mod_php4.c

PHP.INI file Configuration

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality. The php.ini file is read each time PHP is initialized.in other words, whenever

httpd is restarted for the module version or with each script execution for the CGI version.

If your change isn’t showing up, remember to stop and restart httpd. If it still isn’t showing

up, use phpinfo() to check the path to php.ini.

The configuration file is well commented and thorough. Keys are case sensitive, keyword

values are not; whitespace, and lines beginning with semicolons are ignored. Booleans can

be represented by 1/0, Yes/No, On/Off, or True/False. The default values in php.ini-dist

will result in a reasonable PHP installation that can be tweaked later.

Here we are explaining the important settings in php.ini which you may need for your PHP

Parser.

short_open_tag = Off

Short open tags look like this: <? ?>. This option must be set to Off if you want to use

XML functions.

safe_mode = Off

If this is set to On, you probably compiled PHP with the --enable-safe-mode flag. Safe

mode is most relevant to CGI use. See the explanation in the section "CGI compile-time

options". earlier in this chapter.

safe_mode_exec_dir = [DIR]

This option is relevant only if safe mode is on; it can also be set with the --with-exec-dir

flag during the Unix build process. PHP in safe mode only executes external binaries out

of this directory. The default is /usr/local/bin. This has nothing to do with serving up a

normal PHP/HTML Web page.

safe_mode_allowed_env_vars = [PHP_]

This option sets which environment variables users can change in safe mode. The default

is only those variables prepended with "PHP_". If this directive is empty, most variables

are alterable.

safe_mode_protected_env_vars = [LD_LIBRARY_PATH]

This option sets which environment variables users can't change in safe mode, even if

safe_mode_allowed_env_vars is set permissively.

 PHP

12

disable_functions = [function1, function2...]

A welcome addition to PHP4 configuration and one perpetuated in PHP5 is the ability to

disable selected functions for security reasons. Previously, this necessitated hand-editing

the C code from which PHP was made. Filesystem, system, and network functions should

probably be the first to go because allowing the capability to write files and alter the

system over HTTP is never such a safe idea.

max_execution_time = 30

The function set_time_limit() won.t work in safe mode, so this is the main way to make a

script time out in safe mode. In Windows, you have to abort based on maximum memory

consumed rather than time. You can also use the Apache timeout setting to timeout if you

use Apache, but that will apply to non-PHP files on the site too.

error_reporting = E_ALL & ~E_NOTICE

The default value is E_ALL & ~E_NOTICE, all errors except notices. Development servers

should be set to at least the default; only production servers should even consider a lesser

value

error_prepend_string = [""]

With its bookend, error_append_string, this setting allows you to make error messages a

different color than other text, or what you have.

warn_plus_overloading = Off

This setting issues a warning if the + operator is used with strings, as in a form value.

variables_order = EGPCS

This configuration setting supersedes gpc_order. Both are now deprecated along with

register_globals. It sets the order of the different variables: Environment, GET, POST,

COOKIE, and SERVER (aka Built-in).

You can change this order around. Variables will be overwritten successively in left-to-

right order, with the rightmost one winning the hand every time. This means if you left

the default setting and happened to use the same name for an environment variable, a

POST variable, and a COOKIE variable, the COOKIE variable would own that name at the

end of the process. In real life, this doesn't happen much.

register_globals = Off

This setting allows you to decide whether you wish to register EGPCS variables as global.

This is now deprecated, and as of PHP4.2, this flag is set to Off by default. Use superglobal

arrays instead. All the major code listings in this book use superglobal arrays.

gpc_order = GPC

This setting has been GPC Deprecated.

 PHP

13

magic_quotes_gpc = On

This setting escapes quotes in incoming GET/POST/COOKIE data. If you use a lot of forms

which possibly submit to themselves or other forms and display form values, you may

need to set this directive to On or prepare to use addslashes() on string-type data.

magic_quotes_runtime = Off

This setting escapes quotes in incoming database and text strings. Remember that SQL

adds slashes to single quotes and apostrophes when storing strings and does not strip

them off when returning them. If this setting is Off, you will need to use stripslashes()

when outputting any type of string data from a SQL database. If magic_quotes_sybase is

set to On, this must be Off.

magic_quotes_sybase = Off

This setting escapes single quotes in incoming database and text strings with Sybase-style

single quotes rather than backslashes. If magic_quotes_runtime is set to On, this must be

Off.

auto-prepend-file = [path/to/file]

If a path is specified here, PHP must automatically include() it at the beginning of every

PHP file. Include path restrictions do apply.

auto-append-file = [path/to/file]

If a path is specified here, PHP must automatically include() it at the end of every PHP

file.unless you escape by using the exit() function. Include path restrictions do apply.

include_path = [DIR]

If you set this value, you will only be allowed to include or require files from these

directories. The include directory is generally under your document root; this is mandatory

if you.re running in safe mode. Set this to . in order to include files from the same directory

your script is in. Multiple directories are separated by colons:

.:/usr/local/apache/htdocs:/usr/local/lib.

doc_root = [DIR]

If you.re using Apache, you.ve already set a document root for this server or virtual host

in httpd.conf. Set this value here if you.re using safe mode or if you want to enable PHP

only on a portion of your site (for example, only in one subdirectory of your Web root).

file_uploads = [on/off]

Turn on this flag if you will upload files using PHP script.

upload_tmp_dir = [DIR]

Do not uncomment this line unless you understand the implications of HTTP uploads!

session.save-handler = files

Except in rare circumstances, you will not want to change this setting. So don't touch it.

 PHP

14

ignore_user_abort = [On/Off]

This setting controls what happens if a site visitor clicks the browser.s Stop button. The

default is On, which means that the script continues to run to completion or timeout. If

the setting is changed to Off, the script will abort. This setting only works in module mode,

not CGI.

mysql.default_host = hostname

The default server host to use when connecting to the database server if no other host is

specified.

mysql.default_user = username

The default user name to use when connecting to the database server if no other name is

specified.

mysql.default_password = password

The default password to use when connecting to the database server if no other password

is specified.

 PHP

15

Escaping to PHP

The PHP parsing engine needs a way to differentiate PHP code from other elements in the

page. The mechanism for doing so is known as 'escaping to PHP.' There are four ways to

do this:

Canonical PHP tags

The most universally effective PHP tag style is:

<?php...?>

If you use this style, you can be positive that your tags will always be correctly interpreted.

Short-open (SGML-style) tags

Short or short-open tags look like this:

<?...?>

Short tags are, as one might expect, the shortest option You must do one of two things

to enable PHP to recognize the tags:

 Choose the --enable-short-tags configuration option when you're building PHP.

 Set the short_open_tag setting in your php.ini file to on. This option must be

disabled to parse XML with PHP because the same syntax is used for XML tags.

ASP-style tags

ASP-style tags mimic the tags used by Active Server Pages to delineate code blocks. ASP-

style tags look like this:

<%...%>

To use ASP-style tags, you will need to set the configuration option in your php.ini file.

HTML script tags

HTML script tags look like this:

<script language="PHP">...</script>

 PHP ─ Syntax Overview

 PHP

16

Commenting PHP Code

A comment is the portion of a program that exists only for the human reader and stripped

out before displaying the programs result. There are two commenting formats in PHP:

Single-line comments: They are generally used for short explanations or notes relevant

to the local code. Here are the examples of single line comments.

<?
This is a comment, and
This is the second line of the comment
// This is a comment too. Each style comments only
print "An example with single line comments";
?>

Multi-lines printing: Here are the examples to print multiple lines in a single print

statement:

<?
First Example
print <<<END
This uses the "here document" syntax to output
multiple lines with $variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon no extra whitespace!
END;
Second Example
print "This spans
multiple lines. The newlines will be
output as well";
?>

Multi-lines comments: They are generally used to provide pseudocode algorithms and

more detailed explanations when necessary. The multiline style of commenting is the same

as in C. Here are the example of multi lines comments.

<?
/* This is a comment with multiline
 Author : Mohammad Mohtashim
 Purpose: Multiline Comments Demo
 Subject: PHP
*/
print "An example with multi line comments";
?>

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces,

tabs, and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace

characters you have in a row.one whitespace character is the same as many such

characters.

 PHP

17

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the

variable $four is equivalent:

$four = 2 + 2; // single spaces
$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs
$four =
2+
2; // multiple lines

PHP is case sensitive

Yeah it is true that PHP is a case sensitive language. Try out the following example:

<html>
<body>
<?
$capital = 67;
print("Variable capital is $capital
");
print("Variable CaPiTaL is $CaPiTaL
");
?>
</body>
</html>

This will produce the following result:

Variable capital is 67
Variable CaPiTaL is

Statements are expressions terminated by semicolons

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence of

valid PHP statements that is enclosed by the PHP tags is a valid PHP program. Here is a

typical statement in PHP, which in this case assigns a string of characters to a variable

called $greeting:

$greeting = "Welcome to PHP!";

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159),

strings (.two.), variables ($two), constants (TRUE), and the special words that make up

the syntax of PHP itself like if, else, while, for and so forth

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence

of statements anywhere a statement can go by enclosing them in a set of curly braces.

Here both statements are equivalent:

 PHP

18

if (3 == 2 + 1)

 print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1)

{

 print("Good - I haven't totally");

 print("lost my mind.
");

}

Running PHP Script from Command Prompt

Yes you can run your PHP script on your command prompt. Assuming you have the

following content in test.php file

<?php
 echo "Hello PHP!!!!!";
?>

Now run this script as command prompt as follows:

$ php test.php

It will produce the following result

Hello PHP!!!!!

 PHP

19

The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on the left-hand side

and the expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not know in advance

whether it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one to another when

necessary.

 PHP variables are Perl-like.

PHP has a total of eight data types which we use to construct our variables:

 Integers: are whole numbers, without a decimal point, like 4195.

 Doubles: are floating-point numbers, like 3.14159 or 49.1.

 Booleans: have only two possible values either true or false.

 NULL: is a special type that only has one value: NULL.

 Strings: are sequences of characters, like 'PHP supports string operations.'

 Arrays: are named and indexed collections of other values.

 Objects: are instances of programmer-defined classes, which can package up both

other kinds of values and functions that are specific to the class.

 Resources: are special variables that hold references to resources external to PHP

(such as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the

compound types can package up other arbitrary values of arbitrary type, whereas the

simple types cannot.

We will explain only simile data type in this chapters. Array and Objects will be explained

separately.

 PHP ─ Variable Types

 PHP

20

Integers

They are whole numbers, without a decimal point, like 4195. They are the simplest

type .they correspond to simple whole numbers, both positive and negative. Integers can

be assigned to variables, or they can be used in expressions, like so:

$int_var = 12345;

$another_int = -12345 + 12345;

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format.

Decimal format is the default, octal integers are specified with a leading 0, and

hexadecimals have a leading 0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and

the smallest (most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles

They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal

places needed. For example, the code:

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print(.$many + $many_2 = $few
.);

It produces the following browser output:

2.28888 + 2.21112 = 4.5

Boolean

They have only two possible values either true or false. PHP provides a couple of constants

especially for use as Booleans: TRUE and FALSE, which can be used like so:

if (TRUE)

 print("This will always print
");

else

 print("This will never print
");

Interpreting other types as Booleans

Here are the rules for determine the "truth" of any value not already of the Boolean type:

 If the value is a number, it is false if exactly equal to zero and true otherwise.

 If the value is a string, it is false if the string is empty (has zero characters) or is

the string "0", and is true otherwise.

 PHP

21

 Values of type NULL are always false.

 If the value is an array, it is false if it contains no other values, and it is true

otherwise. For an object, containing a value means having a member variable that

has been assigned a value.

 Valid resources are true (although some functions that return resources when they

are successful will return FALSE when unsuccessful).

 Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used

in a Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

NULL

NULL is a special type that only has one value: NULL. To give a variable the NULL value,

simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive;

you could just as well have typed:

$my_var = null;

A variable that has been assigned NULL has the following properties:

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with IsSet() function.

Strings

They are sequences of characters, like "PHP supports string operations". Following are

valid examples of string:

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

 PHP

22

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';

print($literally);

$literally = "My $variable will print!\\n";

print($literally);

?>

This will produce the following result:

My $variable will not print!\n

My name will print

There are no artificial limits on string length - within the bounds of available memory, you

ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the

following two ways by PHP:

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their

values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

 PHP

23

Here Document

You can assign multiple lines to a single string variable using here document:

<?php

$channel =<<<_XML_

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

</channel>

XML;

echo <<<END

This uses the "here document" syntax to output

multiple lines with variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon. no extra whitespace!

END;

print $channel;

?>

This will produce the following result:

This uses the "here document" syntax to output

multiple lines with variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon. no extra whitespace!

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

 PHP

24

Variable Naming

Rules for naming a variable is:

 Variable names must begin with a letter or underscore character.

 A variable name can consist of numbers, letters, underscores but you cannot use

characters like + , - , % , (,) . & , etc

There is no size limit for variables.

PHP – Variables

Scope can be defined as the range of availability a variable has to the program in which it

is declared. PHP variables can be one of four scope types:

 Local variables

 Function parameters

 Global variables

 Static variables

PHP Local Variables

A variable declared in a function is considered local; that is, it can be referenced solely in

that function. Any assignment outside of that function will be considered to be an entirely

different variable from the one contained in the function:

<?

$x = 4;

function assignx () {

$x = 0;

print "\$x inside function is $x.
";

}

assignx();

print "\$x outside of function is $x.
";

?>

This will produce the following result.

$x inside function is 0.

$x outside of function is 4.

 PHP

25

PHP Function Parameters

PHP Functions are covered in detail in PHP Function Chapter. In short, a function is a small

unit of program which can take some input in the form of parameters and does some

processing and may return a value.

Function parameters are declared after the function name and inside parentheses. They

are declared much like a typical variable would be:

<?

// multiply a value by 10 and return it to the caller

function multiply ($value) {

 $value = $value * 10;

 return $value;

}

$retval = multiply (10);

Print "Return value is $retval\n";

?>

This will produce the following result.

Return value is 100

PHP Global Variables

In contrast to local variables, a global variable can be accessed in any part of the program.

However, in order to be modified, a global variable must be explicitly declared to be global

in the function in which it is to be modified. This is accomplished, conveniently enough, by

placing the keyword GLOBAL in front of the variable that should be recognized as global.

Placing this keyword in front of an already existing variable tells PHP to use the variable

having that name. Consider an example:

<?

$somevar = 15;

function addit() {

GLOBAL $somevar;

$somevar++;

print "Somevar is $somevar";

}

addit();

?>

 PHP

26

This will produce the following result.

Somevar is 16

PHP Static Variables

The final type of variable scoping that I discuss is known as static. In contrast to the

variables declared as function parameters, which are destroyed on the function's exit, a

static variable will not lose its value when the function exits and will still hold that value

should the function be called again.

You can declare a variable to be static simply by placing the keyword STATIC in front of

the variable name.

<?

function keep_track() {

 STATIC $count = 0;

 $count++;

 print $count;

 print "
";

}

keep_track();

keep_track();

keep_track();

?>

This will produce the following result.

1

2

3

 PHP

27

A constant is a name or an identifier for a simple value. A constant value cannot change

during the execution of the script. By default, a constant is case-sensitive. By convention,

constant identifiers are always uppercase. A constant name starts with a letter or

underscore, followed by any number of letters, numbers, or underscores. If you have

defined a constant, it can never be changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a

constant, you have to simply specifying its name. Unlike with variables, you do not need

to have a constant with a $. You can also use the function constant() to read a constant's

value if you wish to obtain the constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its name,

i.e., it is stored in a variable or returned by a function.

constant() example

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are

 There is no need to write a dollar sign ($) before a constant, where as in Variable

one has to write a dollar sign.

 Constants cannot be defined by simple assignment, they may only be defined

using the define() function.

 Constants may be defined and accessed anywhere without regard to variable

scoping rules.

 Once the Constants have been set, may not be redefined or undefined.

 PHP ─ Constants

 PHP

28

Valid and invalid constant names

// Valid constant names

define("ONE", "first thing");

define("TWO2", "second thing");

define("THREE_3", "third thing")

// Invalid constant names

define("2TWO", "second thing");

define("__THREE__", "third value");

PHP Magic constants

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For

example, the value of __LINE__ depends on the line that it's used on in your script. These

special constants are case-insensitive and are as follows:

The following table lists a few "magical" PHP constants along with their description:

Name Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the

name of the included file is returned. Since PHP
4.0.2, __FILE__ always contains an absolute path whereas in older

versions it contained relative path under some circumstances.

__FUNCTION__ The function name. (Added in PHP 4.3.0) As of PHP 5 this constant

returns the function name as it was declared (case-sensitive). In PHP

4 its value is always lowercased.

__CLASS__ The class name. (Added in PHP 4.3.0) As of PHP 5 this constant

returns the class name as it was declared (case-sensitive). In PHP 4

its value is always lowercased.

__METHOD__ The class method name. (Added in PHP 5.0.0) The method name is

returned as it was declared (case-sensitive).

 PHP

29

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9.

Here 4 and 5 are called operands and + is called operator. PHP language supports following

type of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Let’s have a look on all operators one by one.

Arithmetic Operators

The following arithmetic operators are supported by PHP language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide the numerator by denominator B / A will give 2

% Modulus Operator and remainder of after an

integer division

B % A will give 0

++ Increment operator, increases integer value by

one

A++ will give 11

-- Decrement operator, decreases integer value

by one

A-- will give 9

Example

Try the following example to understand all the arithmetic operators. Copy and paste

following PHP program in test.php file and keep it in your PHP Server's document root and

browse it using any browser.

 PHP ─ Operator Types

 PHP

30

<html>

<head><title>Arithmetical Operators</title><head>

<body>

<?php

 $a = 42;

 $b = 20;

 $c = $a + $b;

 echo "Addition Operation Result: $c
";

 $c = $a - $b;

 echo "Subtraction Operation Result: $c
";

 $c = $a * $b;

 echo "Multiplication Operation Result: $c
";

 $c = $a / $b;

 echo "Division Operation Result: $c
";

 $c = $a % $b;

 echo "Modulus Operation Result: $c
";

 $c = $a++;

 echo "Increment Operation Result: $c
";

 $c = $a--;

 echo "Decrement Operation Result: $c
";

?>

</body>

</html>

This will produce the following result:

Addition Operation Result: 62

Subtraction Operation Result: 22

Multiplication Operation Result: 840

Division Operation Result: 2.1

Modulus Operation Result: 2

Increment Operation Result: 42

Decrement Operation Result: 43

 PHP

31

Comparison Operators

There are following comparison operators supported by PHP language.

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are

equal or not, if yes, then condition becomes

true.

(A == B) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal, then

condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater

than the value of right operand, if yes, then

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes, then

condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater

than or equal to the value of right operand,

if yes then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right operand,

if yes, then condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the comparison operators. Copy and paste the

following PHP program in test.php file and keep it in your PHP Server's document root and

browse it using any browser.

<html>

<head><title>Comparison Operators</title><head>

<body>

<?php

 $a = 42;

 $b = 20;

 if($a == $b){

 echo "TEST1 : a is equal to b
";

 }else{

 echo "TEST1 : a is not equal to b
";

 PHP

32

 }

 if($a > $b){

 echo "TEST2 : a is greater than b
";

 }else{

 echo "TEST2 : a is not greater than b
";

 }

 if($a < $b){

 echo "TEST3 : a is less than b
";

 }else{

 echo "TEST3 : a is not less than b
";

 }

 if($a != $b){

 echo "TEST4 : a is not equal to b
";

 }else{

 echo "TEST4 : a is equal to b
";

 }

 if($a >= $b){

 echo "TEST5 : a is either greater than or equal to b
";

 }else{

 echo "TEST5 : a is neither greater than nor equal to b
";

 }

 if($a <= $b){

 echo "TEST6 : a is either less than or equal to b
";

 }else{

 echo "TEST6 : a is neither less than nor equal to b
";

 }

?>

</body>

</html>

This will produce the following result:

TEST1 : a is not equal to b

TEST2 : a is greater than b

TEST3 : a is not less than b

TEST4 : a is not equal to b

TEST5 : a is either greater than or equal to b

 PHP

33

TEST6 : a is neither less than nor equal to b

Logical Operators

The following logical operators are supported by PHP language.

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

and

Called Logical AND operator. If both the

operands are true, then condition becomes

true.

(A and B) is true.

or

Called Logical OR Operator. If any of the two

operands are non zero, then condition becomes

true.

(A or B) is true.

&&

Called Logical AND operator. If both the

operands are non zero, then condition becomes

true.

(A && B) is true.

||

Called Logical OR Operator. If any of the two

operands are non zero, then condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition is

true, then Logical NOT operator will make

false.

!(A && B) is false.

Example

Try the following example to understand all the logical operators. Copy and paste the

following PHP program in test.php file and keep it in your PHP Server's document root and

browse it using any browser.

<html>

<head><title>Logical Operators</title><head>

<body>

<?php

 $a = 42;

 PHP

34

 $b = 0;

 if($a && $b){

 echo "TEST1 : Both a and b are true
";

 }else{

 echo "TEST1 : Either a or b is false
";

 }

 if($a and $b){

 echo "TEST2 : Both a and b are true
";

 }else{

 echo "TEST2 : Either a or b is false
";

 }

 if($a || $b){

 echo "TEST3 : Either a or b is true
";

 }else{

 echo "TEST3 : Both a and b are false
";

 }

 if($a or $b){

 echo "TEST4 : Either a or b is true
";

 }else{

 echo "TEST4 : Both a and b are false
";

 }

 $a = 10;

 $b = 20;

 if($a){

 echo "TEST5 : a is true
";

 }else{

 echo "TEST5 : a is false
";

 }

 if($b){

 echo "TEST6 : b is true
";

 }else{

 echo "TEST6 : b is false
";

 }

 if(!$a){

 echo "TEST7 : a is true
";

 }else{

 echo "TEST7 : a is false
";

 PHP

35

 }

 if(!$b){

 echo "TEST8 : b is true
";

 }else{

 echo "TEST8 : b is false
";

 }

?>

</body>

</html>

This will produce the following result:

TEST1 : Either a or b is false

TEST2 : Either a or b is false

TEST3 : Either a or b is true

TEST4 : Either a or b is true

TEST5 : a is true

TEST6 : b is true

TEST7 : a is false

TEST8 : b is false

Assignment Operators

PHP supports the following assignment operators:

Operator Description Example

= Simple assignment operator, Assigns values

from right side operands to left side operand

C = A + B will assign the

value of A + B into C

+= Add AND assignment operator, It adds right

operand to the left operand and assign the

result to left operand

C += A is equivalent to

C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left operand

and assign the result to left operand

C -= A is equivalent to C

= C - A

 PHP

36

*= Multiply AND assignment operator, It multiplies

right operand with the left operand and assign

the result to left operand

C *= A is equivalent to

C = C * A

/= Divide AND assignment operator, It divides left

operand with the right operand and assign the

result to left operand

C /= A is equivalent to C

= C / A

%= Modulus AND assignment operator, It takes

modulus using two operands and assign the

result to left operand

C %= A is equivalent to

C = C % A

Example

Try the following example to understand all the assignment operators. Copy and paste the

following PHP program in test.php file and keep it in your PHP Server's document root and

browse it using any browser.

<html>

<head><title>Assignment Operators</title><head>

<body>

<?php

 $a = 42;

 $b = 20;

 $c = $a + $b; /* Assignment operator */

 echo "Addition Operation Result: $c
";

 $c += $a; /* c value was 42 + 20 = 62 */

 echo "Add AND Assignment Operation Result: $c
";

 $c -= $a; /* c value was 42 + 20 + 42 = 104 */

 echo "Subtract AND Assignment Operation Result: $c
";

 $c *= $a; /* c value was 104 - 42 = 62 */

 echo "Multiply AND Assignment Operation Result: $c
";

 $c /= $a; /* c value was 62 * 42 = 2604 */

 echo "Division AND Assignment Operation Result: $c
";

 $c %= $a; /* c value was 2604/42 = 62*/

 echo "Modulus AND Assignment Operation Result: $c
";

?>

</body>

</html>

 PHP

37

This will produce the following result:

Addition Operation Result: 62

Add AND Assignment Operation Result: 104

Subtract AND Assignment Operation Result: 62

Multiply AND Assignment Operation Result: 2604

Division AND Assignment Operation Result: 62

Modulus AND Assignment Operation Result: 20

Conditional Operator

There is one more operator called the conditional operator. It first evaluates an expression

for a true or false value and then executes one of the two given statements depending

upon the result of the evaluation.

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X :

Otherwise value Y

Try the following example to understand the conditional operator. Copy and paste the

following PHP program in test.php file and keep it in your PHP Server's document root and

browse it using any browser.

<html>

<head><title>Arithmetical Operators</title><head>

<body>

<?php

 $a = 10;

 $b = 20;

 /* If condition is true then assign a to result otherwise b */

 $result = ($a > $b) ? $a :$b;

 echo "TEST1 : Value of result is $result
";

 /* If condition is true then assign a to result otherwise b */

 $result = ($a < $b) ? $a :$b;

 echo "TEST2 : Value of result is $result
";

?>

</body>

</html>

 PHP

38

This will produce the following result:

TEST1 : Value of result is 20

TEST2 : Value of result is 10

Operators Categories

All the operators we have discussed above can be categorized into the following

categories:

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.

 The conditional operator (a ternary operator), which takes three operands and

evaluates either the second or third expression, depending on the evaluation of

the first expression.

 Assignment operators, which assign a value to a variable.

Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator:

For example, x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher

precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be

evaluated first.

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

 PHP

39

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

 PHP

40

The if, elseif ...else and switch statements are used to take decision based on the different

condition.

You can use conditional statements in your code to make your decisions. PHP supports the

following three decision making statements:

 if...else statement - use this statement if you want to execute a set of code when

a condition is true and another if the condition is not true

 elseif statement - is used with the if...else statement to execute a set of code if

one of several condition are true

 switch statement - is used if you want to select one of many blocks of code to be

executed, use the Switch statement. The switch statement is used to avoid long

blocks of if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is

false, use the if....else statement.

Syntax

if (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday,

otherwise it will output "Have a nice day!":

<html>

<body>

 <?php

$d=date("D");

if ($d=="Fri")

 echo "Have a nice weekend!";

else

 echo "Have a nice day!";

?>

 PHP ─ Decision Making

 PHP

41

 </body>

</html>

It will produce the following result:

The ElseIf Statement

If you want to execute some code if one of the several conditions is true, then use the

elseif statement.

Syntax

if (condition)

 code to be executed if condition is true;

elseif (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and

"Have a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice

day!":

<html>

<body>

 <?php

$d=date("D");

if ($d=="Fri")

 echo "Have a nice weekend!";

 PHP

42

elseif ($d=="Sun")

 echo "Have a nice Sunday!";

else

 echo "Have a nice day!";

?>

 </body>

</html>

It will produce the following result:

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

switch (expression)

{

case label1:

 code to be executed if expression = label1;

 break;

case label2:

 code to be executed if expression = label2;

 break;

default:

 code to be executed

 if expression is different

 from both label1 and label2;

}

Example

 PHP

43

The switch statement works in an unusual way. First it evaluates the given expression,

then seeks a label to match the resulting value. If a matching value is found, then the

code associated with the matching label will be executed. If none of the labels match, then

the statement will execute any specified default code.

<html>

<body>

 <?php

$d=date("D");

switch ($d)

{

case "Mon":

 echo "Today is Monday";

 break;

case "Tue":

 echo "Today is Tuesday";

 break;

case "Wed":

 echo "Today is Wednesday";

 break;

case "Thu":

 echo "Today is Thursday";

 break;

case "Fri":

 echo "Today is Friday";

 break;

case "Sat":

 echo "Today is Saturday";

 break;

case "Sun":

 echo "Today is Sunday";

 break;

default:

 echo "Wonder which day is this ?";

}

?>

 </body>

</html>

It will produce the following result:

 PHP

44

 PHP

45

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

 for - loops through a block of code a specified number of times.

 while - loops through a block of code if and as long as a specified condition is true.

 do...while - loops through a block of code once, and then repeats the loop as long

as a special condition is true.

 foreach - loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a

statement or a block of statements.

Syntax

for (initialization; condition; increment)

{

 code to be executed;

}

The initializer is used to set the start value for the counter of the number of loop iterations.

A variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two

variables on each pass of the loop:

<html>

<body>

<?php

$a = 0;

$b = 0;

for($i=0; $i<5; $i++)

{

 $a += 10;

 PHP ─ Loop Types

 PHP

46

 $b += 5;

}

echo ("At the end of the loop a=$a and b=$b");

?>

</body>

</html>

This will produce the following result:

At the end of the loop a=50 and b=25

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true, then the code block will be executed. After the code has

executed the test expression will again be evaluated and the loop will continue until the

test expression is found to be false.

Syntax

while (condition)

{

 code to be executed;

}

Example

This example decrements a variable value on each iteration of the loop and the counter

increments until it reaches 10 when the evaluation becomes false and the loop ends.

<html>

<body>

<?php

$i = 0;

$num = 50;

while($i < 10)

{

 $num--;

 $i++;

}

echo ("Loop stopped at i = $i and num = $num");

 PHP

47

?>

</body>

</html>

This will produce the following result:

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it will then repeat the

loop as long as a condition is true.

Syntax

do

{

 code to be executed;

}while (condition);

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10:

<html>

<body>

<?php

$i = 0;

$num = 0;

do

{

 $i++;

}while($i < 10);

echo ("Loop stopped at i = $i");

?>

</body>

</html>

This will produce the following result:

Loop stopped at i = 10

 PHP

48

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the

current array element is assigned to $value and the array pointer is moved by one and in

the next pass next element will be processed.

Syntax

foreach (array as value)

{

 code to be executed;

}

Example

Try out the following example to list out the values of an array.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);

foreach($array as $value)

{

 echo "Value is $value
";

}

?>

</body>

</html>

This will produce the following result:

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

 PHP

49

Example

In the following example, the condition test becomes true when the counter value reaches

3 and loop terminates.

<html>

<body>

<?php

$i = 0;

while($i < 10)

{

 $i++;

 if($i == 3)break;

}

echo ("Loop stopped at i = $i");

?>

</body>

</html>

This will produce the following result:

Loop stopped at i = 3

 PHP

50

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not

terminate the loop.

Just like the break statement the continue statement is situated inside the statement

block containing the code that the loop executes, preceded by a conditional test. For the

pass encountering continue statement, rest of the loop code is skipped and next pass

starts.

Example

In the following example, the loop prints the value of array, but when the condition

becomes true, it just skips the code and next value is printed.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);

foreach($array as $value)

{

 if($value == 3)continue;

 echo "Value is $value
";

}

?>

</body>

</html>

This will produce the following result:

 PHP

51

Value is 1

Value is 2

Value is 4

Value is 5

 PHP

52

An array is a data structure that stores one or more similar type of values in a single value.

For example, if you want to store 100 numbers, then instead of defining 100 variables, it

is easy to define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c

which is called array index.

 Numeric array - An array with a numeric index. Values are stored and accessed

in linear fashion

 Associative array - An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

 Multidimensional array - An array containing one or more arrays and values are

accessed using multiple indices

NOTE: Built-in array functions is given in function reference PHP Array Functions

Numeric Array

These arrays can store numbers, strings and any object but their index will be represented

by numbers. By default, the array index starts from zero.

Example

The following example demonstrates how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function

reference.

<html>

<body>

<?php

/* First method to create array. */

$numbers = array(1, 2, 3, 4, 5);

foreach($numbers as $value)

{

 echo "Value is $value
";

}

/* Second method to create array. */

$numbers[0] = "one";

$numbers[1] = "two";

$numbers[2] = "three";

 PHP ─ Arrays

http://www.tutorialspoint.com/php/php_array_functions.htm

 PHP

53

$numbers[3] = "four";

$numbers[4] = "five";

foreach($numbers as $value)

{

 echo "Value is $value
";

}

?>

</body>
</html>

This will produce the following result:

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they

are different in terms of their index. Associative array will have their index as string so

that you can establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be

the best choice. Instead, we could use the employees names as the keys in our associative

array, and the value would be their respective salary.

NOTE: Don't keep associative array inside double quote while printing, otherwise it would

not return any value.

Example

<html>

<body>

<?php

/* First method to associate create array. */

 PHP

54

$salaries = array(

 "mohammad" => 2000,

 "qadir" => 1000,

 "zara" => 500

);

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

/* Second method to create array. */

$salaries['mohammad'] = "high";

$salaries['qadir'] = "medium";

$salaries['zara'] = "low";

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

?>

</body>

</html>

This will produce the following result:

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each

element in the sub-array can be an array, and so on. Values in the multi-dimensional array

are accessed using multiple index.

Example

In this example, we create a two dimensional array to store marks of three students in

three subjects:

 PHP

55

This example is an associative array, you can create numeric array in the same fashion.

<html>

<body>

<?php

 $marks = array(

 "mohammad" => array

 (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array

 (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

 "zara" => array

 (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

?>

</body>

</html>

 PHP

56

This will produce the following result:

Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

 PHP

57

They are sequences of characters, like "PHP supports string operations".

NOTE: Built-in string functions is given in function reference PHP String Functions

Some valid examples of strings are as follows:

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';

print($literally);

$literally = "My $variable will print!\\n";

print($literally);

?>

This will produce the following result:

My $variable will not print!\n

My name will print

There are no artificial limits on string length - within the bounds of available memory, you

ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the

following two ways by PHP:

 Certain character sequences beginning with backslash (\) are replaced with special

characters

 Variable names (starting with $) are replaced with string representations of their

values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 PHP ─ Strings

http://in.php.net/manual/en/ref.strings.php

 PHP

58

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator:

<?php
$string1="Hello World";
$string2="1234";
echo $string1 . " " . $string2;
?>

This will produce the following result:

Hello World 1234

If you look at the code above, you see that we used the concatenation operator two times.

This is because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty

space, to separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":

<?php
echo strlen("Hello world!");
?>

This will produce the following result:

12

The length of a string is often used in loops or other functions, when it is important to

know when the string ends. (i.e. in a loop, we would want to stop the loop after the last

character in the string).

 PHP

59

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If

no match is found, it will return FALSE.

Let's see if we can find the string "world" in our string:

<?php

echo strpos("Hello world!","world");

?>

This will produce the following result:

 6

As you can see, the position of the string "world" in our string is position 6. The reason

that it is 6, and not 7, is that the first position in the string is 0, and not 1.

 PHP

60

This session demonstrates how PHP can provide dynamic content according to browser

type, randomly generated numbers or User Input. It also demonstrated how the client

browser can be redirected.

Identifying Browser & Platform

PHP creates some useful environment variables that can be seen in the phpinfo.php

page that was used to setup the PHP environment.

One of the environment variables set by PHP is HTTP_USER_AGENT which identifies the

user's browser and operating system.

PHP provides a function getenv() to access the value of all the environment variables. The

information contained in the HTTP_USER_AGENT environment variable can be used to

create dynamic content appropriate to the browser.

The following example demonstrates how you can identify a client browser and operating

system.

NOTE: The function preg_match()is discussed in PHP Regular expression session.

<html>

<body>

<?php

 $viewer = getenv("HTTP_USER_AGENT");

 $browser = "An unidentified browser";

 if(preg_match("/MSIE/i", "$viewer"))

 {

 $browser = "Internet Explorer";

 }

 else if(preg_match("/Netscape/i", "$viewer"))

 {

 $browser = "Netscape";

 }

 else if(preg_match("/Mozilla/i", "$viewer"))

 {

 $browser = "Mozilla";

 }

 $platform = "An unidentified OS!";

 if(preg_match("/Windows/i", "$viewer"))

 PHP ─ Web Concepts

 PHP

61

 {

 $platform = "Windows!";

 }

 else if (preg_match("/Linux/i", "$viewer"))

 {

 $platform = "Linux!";

 }

 echo("You are using $browser on $platform");

?>

</body>

</html>

This is producing the following result on my machine. This result may be different for your

computer, depending on what browser you are using.

Display Images Randomly

The PHP rand() function is used to generate a random number. This function can generate

numbers with-in a given range. The random number generator should be seeded to

prevent a regular pattern of numbers being generated. This is achieved using
the srand()function that specifies the seed number as its argument.

The following example demonstrates how you can display different image each time out

of four images:

<html>

<body>

<?php

 srand(microtime() * 1000000);

 $num = rand(1, 4);

 switch($num)

 PHP

62

 {

 case 1: $image_file = "/home/images/alfa.jpg";

 break;

 case 2: $image_file = "/home/images/ferrari.jpg";

 break;

 case 3: $image_file = "/home/images/jaguar.jpg";

 break;

 case 4: $image_file = "/home/images/porsche.jpg";

 break;

 }

 echo "Random Image : ";

?>

</body>

</html>

It will produce the following result:

Using HTML Forms

The most important thing to notice when dealing with HTML forms and PHP is that any

form element in an HTML page will automatically be available to your PHP scripts.

Try out the following example by putting the source code in test.php script.

<?php

 if($_POST["name"] || $_POST["age"])

 {

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

 PHP

63

?>

<html>

<body>

 <form action="<?php $_PHP_SELF ?>" method="POST">

 Name: <input type="text" name="name" />

 Age: <input type="text" name="age" />

 <input type="submit" />

 </form>

</body>

</html>

It will produce the following result:

 The PHP default variable $_PHP_SELF is used for the PHP script name and when

you click "submit" button, the same PHP script will be called and will produce

following result:

 The method = "POST" is used to post user data to the server script. There are
two methods of posting data to the server script which are discussed in PHP GET

& POST chapter.

Browser Redirection

The PHP header() function supplies raw HTTP headers to the browser and can be used to

redirect it to another location. The redirection script should be at the very top of the page

to prevent any other part of the page from loading.

The target is specified by the Location: header as the argument to the header() function.

After calling this function the exit() function can be used to halt parsing of rest of the

code.

The following example demonstrates how you can redirect a browser request to another

web page. Try out this example by putting the source code in test.php script.

<?php

 PHP

64

 if($_POST["location"])

 {

 $location = $_POST["location"];

 header("Location:$location");

 exit();

 }

?>

<html>

<body>

 <p>Choose a site to visit :</p>

 <form action="<?php $_PHP_SELF ?>" method="POST">

 <select name="location">

 <option value="http://w3c.org">

 World Wise Web Consortium

 </option>

 <option value="http://www.google.com">

 Google Search Page

 </option>

 </select>

 <input type="submit" />

 </form>

</body>

</html>

It will produce the following output:

Displaying "File Download" Dialog Box

Sometime it is desired that you want to give option where a use will click a link and it will

pop up a "File Download" box to the user instead of displaying actual content. This is very

easy and will be achieved through HTTP header.
The HTTP header will be different from the actual header where we send Content-Type as

text/html\n\n. In this case content type will be application/octet-stream and actual

file name will be concatenated along with it.

 PHP

65

For example, if you want make a FileName file downloadable from a given link, then its

syntax will be as follows.

#!/usr/bin/perl

HTTP Header

print "Content-Type:application/octet-stream; name=\"FileName\"\r\n";

print "Content-Disposition: attachment; filename=\"FileName\"\r\n\n";

Actual File Content

open(FILE, "<FileName");

while(read(FILE, $buffer, 100))

{

 print("$buffer");

}

 PHP

66

There are two ways the browser client can send information to the web server.

 The GET Method

 The POST Method

Before the browser sends the information, it encodes it using a scheme called URL

encoding. In this scheme, name/value pairs are joined with equal signs and different pairs

are separated by the ampersand.

name1=value1&name2=value2&name3=value3

Spaces are removed and replaced with the + character and any other non-alphanumeric

characters are replaced with a hexadecimal values. After the information is encoded, it is

sent to the server.

The GET Method

The GET method sends the encoded user information appended to the page request. The

page and the encoded information are separated by the ? character.

http://www.test.com/index.htm?name1=value1&name2=value2

 The GET method produces a long string that appears in your server logs, in the

browser's Location: box.

 The GET method is restricted to send up to 1024 characters only.

 Never use GET method if you have password or other sensitive information to be sent

to the server.

 GET can't be used to send binary data, like images or word documents, to the server.

 The data sent by GET method can be accessed using QUERY_STRING environment

variable.

 The PHP provides $_GET associative array to access all the sent information using

GET method.

Try out the following example by putting the source code in test.php script.

<?php

 if($_GET["name"] || $_GET["age"])

 {

 echo "Welcome ". $_GET['name']. "
";

 echo "You are ". $_GET['age']. " years old.";

 PHP ─ GET and POST Methods

 PHP

67

 exit();

 }

?>

<html>

<body>

 <form action="<?php $_PHP_SELF ?>" method="GET">

 Name: <input type="text" name="name" />

 Age: <input type="text" name="age" />

 <input type="submit" />

 </form>

</body>

</html>

It will produce the following result:

The POST Method

The POST method transfers information via HTTP headers. The information is encoded as

described in case of GET method and put into a header called QUERY_STRING.

 The POST method does not have any restriction on data size to be sent.

 The POST method can be used to send ASCII as well as binary data.

 The data sent by POST method goes through HTTP header so security depends on

HTTP protocol. By using Secure HTTP you can make sure that your information is

secure.

 The PHP provides $_POST associative array to access all the sent information

using POST method.

 PHP

68

Try out the following example by putting the source code in test.php script.

<?php

 if($_POST["name"] || $_POST["age"])

 {

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action="<?php $_PHP_SELF ?>" method="POST">

 Name: <input type="text" name="name" />

 Age: <input type="text" name="age" />

 <input type="submit" />

 </form>

</body>

</html>

It will produce the following result:

The $_REQUEST variable

The PHP $_REQUEST variable contains the contents of both $_GET, $_POST, and

$_COOKIE. We will discuss $_COOKIE variable when we will explain about cookies.

The PHP $_REQUEST variable can be used to get the result from form data sent with both

the GET and POST methods.

 PHP

69

Try out the following example by putting the source code in test.php script.

<?php

 if($_REQUEST["name"] || $_REQUEST["age"])

 {

 echo "Welcome ". $_REQUEST['name']. "
";

 echo "You are ". $_REQUEST['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action="<?php $_PHP_SELF ?>" method="POST">

 Name: <input type="text" name="name" />

 Age: <input type="text" name="age" />

 <input type="submit" />

 </form>

</body>

</html>

Here $_PHP_SELF variable contains the name of self script in which it is being called.

It will produce the following result:

 PHP

70

You can include the content of a PHP file into another PHP file before the server executes

it. There are two PHP functions which can be used to included one PHP file into another

PHP file.

 The include() Function

 The require() Function

This is a strong point of PHP which helps in creating functions, headers, footers, or

elements that can be reused on multiple pages. This will help developers to make it easy

to change the layout of complete website with minimal effort. If there is any change

required, then instead of changing thousands of files just change included file.

The include() Function

The include() function takes all the text in a specified file and copies it into the file that

uses the include function. If there is any problem in loading a file, then
the include() function generates a warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file menu.php

with the following content.

Home -
ebXML -
AJAX -
PERL

Now create as many pages as you like and include this file to create header. For example

now your test.php file can have the following content.

<html>
<body>

<?php include("menu.php"); ?>

<p>This is an example to show how to include PHP file!</p>

</body>

</html>

This will produce the following result:

Home -
ebXML -
AJAX -
PERL

This is an example to show how to include PHP file.

 PHp ─ File Inclusion

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

 PHP

71

The require() Function

The require() function takes all the text in a specified file and copies it into the file that

uses the include function. If there is any problem in loading a file, then
the require() function generates a fatal error and halt the execution of the script.

So there is no difference in require() and include() except they handle error conditions. It

is recommended to use the require() function instead of include(), because scripts should

not continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same result.

But if you will try the following two examples where file does not exist, then you will get

different results.

<html>
<body>
<?php include("xxmenu.php"); ?>
<p>This is an example to show how to include wrong PHP file!</p>
</body>
</html>

This will produce the following result:

This is an example to show how to include wrong PHP file!

Now let us try same example with require() function.

<html>

<body>

<?php require("xxmenu.php"); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

This time file execution halts and nothing is displayed.

NOTE: You may get plain warning messages or fatal error messages or nothing at all. This

depends on your PHP Server configuration.

 PHP

72

This chapter will explain the following functions related to files:

 Opening a file

 Reading a file

 Writing a file

 Closing a file

Opening and Closing Files

The PHP fopen() function is used to open a file. It requires two arguments stating first

the file name and then mode in which to operate.

Files modes can be specified as one of the six options in this table.

Mode Purpose

r Opens the file for reading only.

Places the file pointer at the beginning of the file.

r+ Opens the file for reading and writing.

Places the file pointer at the beginning of the file.

w Opens the file for writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If the file does not

exist, then it attempts to create a file.

w+ Opens the file for reading and writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If the file does not

exist, then it attempts to create a file.

a Opens the file for writing only.

Places the file pointer at the end of the file.

If the file does not exist, then it attempts to create a file.

a+ Opens the file for reading and writing only.

Places the file pointer at the end of the file.

If the file does not exist, then it attempts to create a file.

If an attempt to open a file fails, then fopen returns a value of false otherwise it returns

a file pointer which is used for further reading or writing to that file.

 ,

 PHP ─ Files & I/O

 PHP

73

After making a changes to the opened file it is important to close it with

the fclose()function. The fclose() function requires a file pointer as its argument and

then returns true when the closure succeeds or false if it fails.

Reading a file

Once a file is opened using fopen() function it can be read with a function called fread().

This function requires two arguments. These must be the file pointer and the length of the

file expressed in bytes.

The file's length can be found using the filesize() function which takes the file name as

its argument and returns the size of the file expressed in bytes.

So here are the steps required to read a file with PHP.

 Open a file using fopen() function.

 Get the file's length using filesize() function.

 Read the file's content using fread() function.

 Close the file with fclose() function.

The following example assigns the content of a text file to a variable and then displays

those contents on the web page.

<html>

<head>

<title>Reading a file using PHP</title>

</head>

<body>

<?php

$filename = "/home/user/guest/tmp.txt";

$file = fopen($filename, "r");

if($file == false)

{

 echo ("Error in opening file");

 exit();

}

$filesize = filesize($filename);

$filetext = fread($file, $filesize);

fclose($file);

echo ("File size : $filesize bytes");

 PHP

74

echo ("<pre>$filetext</pre>");

?>

</body>

</html>

It will produce the following result:

Writing a File

A new file can be written or text can be appended to an existing file using the

PHP fwrite()function. This function requires two arguments specifying a file pointer and

the string of data that is to be written. Optionally a third integer argument can be included

to specify the length of the data to write. If the third argument is included, writing would

will stop after the specified length has been reached.

The following example creates a new text file and then writes a short text heading inside

it. After closing this file its existence is confirmed using file_exist() function which takes

file name as an argument

<?php

$filename = "/home/user/guest/newfile.txt";

$file = fopen($filename, "w");

if($file == false)

{

 echo ("Error in opening new file");

 exit();

}

fwrite($file, "This is a simple test\n");

fclose($file);

?>

 PHP

75

<html>

<head>

<title>Writing a file using PHP</title>

</head>

<body>

<?php

if(file_exist($filename))

{

 $filesize = filesize($filename);

 $msg = "File created with name $filename ";

 $msg .= "containing $filesize bytes";

 echo ($msg);

}

else

{

 echo ("File $filename does not exit");

}

?>

</body>

</html>

It will produce the following result:

We have covered all the function related to file input and out in the PHP File System

Function chapter.

http://www.tutorialspoint.com/php/php_file_system_functions.htm
http://www.tutorialspoint.com/php/php_file_system_functions.htm

 PHP

76

PHP functions are similar to other programming languages. A function is a piece of code

which takes one more input in the form of parameter and does some processing and

returns a value.

You already have seen many functions like fopen() and fread() etc. They are built-in

functions but PHP gives you option to create your own functions as well.

There are two parts which should be clear to you:

 Creating a PHP Function

 Calling a PHP Function

In fact, you hardly need to create your own PHP function because there are already more

than 1000 of built-in library functions created for different area and you just need to call

them according to your requirement.

Please refer to PHP Function Reference for a complete set of useful functions.

Creating PHP Function

It is very easy to create your own PHP function. Suppose you want to create a PHP function

which will simply write a simple message on your browser when you will call it.

The following example creates a function called writeMessage() and then calls it just after

creating it.

Note that while creating a function its name should start with keyword function and all

the PHP code should be put inside { and } braces as shown in the following example below:

<html>

<head>

<title>Writing PHP Function</title>

</head>

<body>

<?php

/* Defining a PHP Function */

function writeMessage()

{

 echo "You are really a nice person, Have a nice time!";

}

/* Calling a PHP Function */

 PHP ─ Functions

 PHP

77

writeMessage();

?>

</body>

</html>

This will display the following result:

You are really a nice person, Have a nice time!

PHP Functions with Parameters

PHP gives you option to pass your parameters inside a function. You can pass as many as

parameters your like. These parameters work like variables inside your function. The

following example takes two integer parameters and adds them together and then prints

them.

<html>

<head>

<title>Writing PHP Function with Parameters</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is : $sum";

}

addFunction(10, 20);

?>

</body>

</html>

This will display the following result:

Sum of the two numbers is : 30

Passing Arguments by Reference

It is possible to pass arguments to functions by reference. This means that a reference to

the variable is manipulated by the function rather than a copy of the variable's value.

 PHP

78

Any changes made to an argument in these cases will change the value of the original

variable. You can pass an argument by reference by adding an ampersand to the variable

name in either the function call or the function definition.

The following example depicts both the cases.

<html>
<head>
<title>Passing Argument by Reference</title>
</head>
<body>
<?php
function addFive($num)
{
 $num += 5;
}

function addSix(&$num)
{
 $num += 6;
}
$orignum = 10;
addFive(&$orignum);
echo "Original Value is $orignum
";
addSix($orignum);
echo "Original Value is $orignum
";
?>
</body>
</html>

This will display the following result:

Original Value is 10
Original Value is 16

PHP Functions returning value

A function can return a value using the return statement in conjunction with a value or

object. return stops the execution of the function and sends the value back to the calling

code.

You can return more than one value from a function using return array(1,2,3,4).

The following example takes two integer parameters and add them together and then

returns their sum to the calling program. Note that return keyword is used to return a

value from a function.

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

 PHP

79

<?php

function addFunction($num1, $num2)

{

 $sum = $num1 + $num2;

 return $sum;

}

$return_value = addFunction(10, 20);

echo "Returned value from the function : $return_value";

?>

</body>

</html>

This will display the following result:

Returned value from the function : 30

Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't pass it.

The following function prints NULL in case use does not pass any value to this function.

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function printMe($param = NULL)

{

 print $param;

}

printMe("This is test");

printMe();

?>

</body>

</html>

 PHP

80

This will produce the following result:

This is test

Dynamic Function Calls

It is possible to assign function names as strings to variables and then treat these variables

exactly as you would the function name itself. The following example depicts this behavior.

<html>
<head>
<title>Dynamic Function Calls</title>
</head>
<body>
<?php
function sayHello()
{
 echo "Hello
";
}
$function_holder = "sayHello";
$function_holder();
?>
</body>
</html>

This will display the following result:

Hello

 PHP

81

Cookies are text files stored on the client computer and they are kept of use tracking

purpose. PHP transparently supports HTTP cookies.

There are three steps involved in identifying returning users:

 Server script sends a set of cookies to the browser. For example, name, age, or

identification number etc.

 Browser stores this information on local machine for future use.

 Next time, when the browser sends any request to the web server, it sends those

cookies information to the server and server uses that information to identify the

user.

This chapter will teach you how to set cookies, how to access them and how to delete

them.

The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a cookie

directly on a browser). A PHP script that sets a cookie might send headers that look

something like this:

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-Feb-07 22:03:38 GMT;

 path=/; domain=tutorialspoint.com

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path

and a domain. The name and value will be URL encoded. The expires field is an instruction

to the browser to "forget" the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this information until the

expiry date. If the user points the browser at any page that matches the path and domain

of the cookie, it will resend the cookie to the server. The browser's headers might look

something like this:

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

 PHP ─ Cookies

 PHP

82

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A PHP script will then have access to the cookie in the environmental variables $_COOKIE

or $HTTP_COOKIE_VARS[] which holds all cookie names and values. Above cookie can be

accessed using $HTTP_COOKIE_VARS["name"].

Setting Cookies with PHP

PHP provided setcookie() function to set a cookie. This function requires up to six

arguments and should be called before <html> tag. For each cookie this function has to

be called separately.

setcookie(name, value, expire, path, domain, security);

Here is the detail of all the arguments:

 Name - This sets the name of the cookie and is stored in an environment variable

called HTTP_COOKIE_VARS. This variable is used while accessing cookies.

 Value -This sets the value of the named variable and is the content that you

actually want to store.

 Expiry - This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970.

After this time cookie will become inaccessible. If this parameter is not set, then

cookie will automatically expire when the Web Browser is closed.

 Path -This specifies the directories for which the cookie is valid. A single forward

slash character permits the cookie to be valid for all directories.

 Domain - This can be used to specify the domain name in very large domains and

must contain at least two periods to be valid. All cookies are only valid for the host

and domain which created them.

 Security - This can be set to 1 to specify that the cookie should only be sent by

secure transmission using HTTPS otherwise set to 0 which mean cookie can be sent

by regular HTTP.

The following example will create two cookies name and age. These cookies will expire

after an hour.

<?php

 setcookie("name", "John Watkin", time()+3600, "/","", 0);

 setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

<head>

 PHP

83

<title>Setting Cookies with PHP</title>

</head>

<body>

<?php echo "Set Cookies"?>

</body>

</html>

Accessing Cookies with PHP

PHP provides many ways to access cookies. The simplest way is to use either $_COOKIE

or $HTTP_COOKIE_VARS variables. The following example will access all the cookies set

in above example.

<html>

<head>

<title>Accessing Cookies with PHP</title>

</head>

<body>

<?php

echo $_COOKIE["name"]. "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"]. "
";

echo $_COOKIE["age"] . "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"] . "
";

?>

</body>

</html>

You can use isset() function to check if a cookie is set or not.

<html>

<head>

<title>Accessing Cookies with PHP</title>

</head>

<body>

<?php

 if(isset($_COOKIE["name"]))

 echo "Welcome " . $_COOKIE["name"] . "
";

 else

 PHP

84

 echo "Sorry... Not recognized" . "
";

?>

</body>

</html>

Deleting Cookie with PHP

Officially, to delete a cookie you should call setcookie() with the name argument only but

this does not always work well, however, and should not be relied on.

It is safest to set the cookie with a date that has already expired:

<?php
 setcookie("name", "", time()- 60, "/","", 0);

 setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

<head>

<title>Deleting Cookies with PHP</title>

</head>

<body>

<?php echo "Deleted Cookies" ?>

</body>

</html>

 PHP

85

An alternative way to make data accessible across the various pages of an entire website

is to use a PHP Session.

A session creates a file in a temporary directory on the server where registered session

variables and their values are stored. This data will be available to all pages on the site

during that visit.

The location of the temporary file is determined by a setting in the php.ini file called

session.save_path. Bore using any session variable make sure you have setup this path.

When a session is started, the following actions take place:

 PHP first creates a unique identifier for that particular session which is a random

string of 32 hexadecimal numbers such as 3c7foj34c3jj973hjkop2fc937e3443.

 A cookie called PHPSESSID is automatically sent to the user's computer to store

unique session identification string.

 A file is automatically created on the server in the designated temporary directory

and bears the name of the unique identifier prefixed by sess_ ie

sess_3c7foj34c3jj973hjkop2fc937e3443.

When a PHP script wants to retrieve the value from a session variable, PHP automatically

gets the unique session identifier string from the PHPSESSID cookie and then looks in its

temporary directory for the file bearing that name and a validation can be done by

comparing both values.

A session ends when the user loses the browser or after leaving the site, the server will

terminate the session after a predetermined period of time, commonly 30 minutes

duration.

Starting a PHP Session

A PHP session is easily started by making a call to the session_start() function. This

function first checks if a session is already started and if none is started, then it starts one.
It is recommended to put the call to session_start() at the beginning of the page.

Session variables are stored in associative array called $_SESSION[]. These variables

can be accessed during lifetime of a session.

The following example starts a session and then registers a variable called counter that

is incremented each time the page is visited during the session.

Make use of isset() function to check if session variable is already set or not.

 PHP ─ Sessions

 PHP

86

Put this code in a test.php file and load this file many times to see the result:

<?php

 session_start();

 if(isset($_SESSION['counter']))

 {

 $_SESSION['counter'] += 1;

 }

 else

 {

 $_SESSION['counter'] = 1;

 }

 $msg = "You have visited this page ". $_SESSION['counter'];

 $msg .= "in this session.";

?>

<html>

<head>

<title>Setting up a PHP session</title>

</head>

<body>

<?php echo ($msg); ?>

</body>

</html>

It will produce the following result:

 PHP

87

Destroying a PHP Session

A PHP session can be destroyed by session_destroy() function. This function does not

need any argument and a single call can destroy all the session variables. If you want to
destroy a single session variable, then you can use unset() function to unset a session

variable.

Here is the example to unset a single variable:

<?php

 unset($_SESSION['counter']);

?>

Here is the call which will destroy all the session variables:

<?php

 session_destroy();

?>

Turning on Auto Session

You don't need to call start_session() function to start a session when a user visits your
site if you can set session.auto_start variable to 1 in php.ini file.

Sessions without cookies

There may be a case when a user does not allow to store cookies on their machine. So

there is another method to send session ID to the browser.

Alternatively, you can use the constant SID which is defined if the session started. If the

client did not send an appropriate session cookie, it has the form

session_name=session_id. Otherwise, it expands to an empty string. Thus, you can embed

it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly

to another page using SID.

<?php

 session_start();

 if (isset($_SESSION['counter'])) {

 $_SESSION['counter'] = 1;

 } else {

 $_SESSION['counter']++;

 }

?>

 $msg = "You have visited this page ". $_SESSION['counter'];

 PHP

88

 $msg .= "in this session.";

 echo ($msg);

<p>

To continue click following link

<a href="nextpage.php?<?php echo htmlspecialchars(SID); >">

</p>

It will produce the following result:

The htmlspecialchars() may be used when printing the SID in order to prevent XSS

related attacks.

 PHP

89

PHP must be configured correctly in the php.ini file with the details of how your system

sends email. Open php.ini file available in /etc/ directory and find the section

headed [mail function].

Windows users should ensure that two directives are supplied. The first is called SMTP that

defines your email server address. The second is called sendmail_from which defines your

own email address.

The configuration for Windows should look something like this:

[mail function]
; For Win32 only.
SMTP = smtp.secureserver.net

; For win32 only
sendmail_from = webmaster@tutorialspoint.com

Linux users simply need to let PHP know the location of their sendmail application. The

path and any desired switches should be specified to the sendmail_path directive.

The configuration for Linux should look something like this:

[mail function]
; For Win32 only.

SMTP =

; For win32 only

sendmail_from =

; For Unix only

sendmail_path = /usr/sbin/sendmail -t -i

Now you are ready to go.

Sending plain text email

PHP makes use of mail() function to send an email. This function requires three

mandatory arguments that specify the recipient's email address, the subject of the

message and the actual message additionally there are other two optional parameters.

mail(to, subject, message, headers, parameters);

 PHP ─ Sending Emails

 PHP

90

Here is the description for each parameters.

Parameter Description

to Required. Specifies the receiver / receivers of the email

subject Required. Specifies the subject of the email. This parameter cannot

contain any newline characters

message Required. Defines the message to be sent. Each line should be

separated with a LF (\n). Lines should not exceed 70 characters

headers Optional. Specifies additional headers, like From, Cc, and Bcc. The

additional headers should be separated with a CRLF (\r\n)

parameters Optional. Specifies an additional parameter to the sendmail program

As soon as the mail function is called, PHP will attempt to send the email, then it will return

true if successful or false if it is failed.

Multiple recipients can be specified as the first argument to the mail() function in a comma

separated list.

Example

The following example will send an HTML email message to xyz@somedomain.com. You

can code this program in such a way that it should receive all content from the user and

then it should send an email.

<html>

<head>

<title>Sending email using PHP</title>

</head>

<body>

<?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is simple text message.";

 $header = "From:abc@somedomain.com \r\n";

 $retval = mail ($to,$subject,$message,$header);

 if($retval == true)

 {

 echo "Message sent successfully...";

 }

 else

 {

 PHP

91

 echo "Message could not be sent...";

 }

?>

</body>

</html>

Sending HTML email

When you send a text message using PHP, then all the content will be treated as simple

text. Even if you will include HTML tags in a text message, it will be displayed as simple

text and HTML tags will not be formatted according to HTML syntax. But PHP provides

option to send an HTML message as actual HTML message.

While sending an email message, you can specify a Mime version, content type and

character set to send an HTML email.

Example

The following example will send an HTML email message to xyz@somedomain.com copying

it to afgh@somedomain.com. You can code this program in such a way that it should

receive all content from the user and then it should send an email.

<html>

<head>

<title>Sending HTML email using PHP</title>

</head>

<body>

<?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is HTML message.";

 $message .= "<h1>This is headline.</h1>";

 $header = "From:abc@somedomain.com \r\n";

 $header = "Cc:afgh@somedomain.com \r\n";

 $header .= "MIME-Version: 1.0\r\n";

 $header .= "Content-type: text/html\r\n";

 $retval = mail ($to,$subject,$message,$header);

 if($retval == true)

 {

 echo "Message sent successfully...";

 }

 else

 {

 PHP

92

 echo "Message could not be sent...";

 }

?>

</body>

</html>

Sending attachments with email

To send an email with mixed content requires to set Content-type header to

multipart/mixed. Then text and attachment sections can be specified

within boundaries.

A boundary is started with two hyphens followed by a unique number which can not appear

in the message part of the email. A PHP function md5() is used to create a 32 digit

hexadecimal number to create unique number. A final boundary denoting the email's final

section must also end with two hyphens.

Attached files should be encoded with the base64_encode() function for safer

transmission and are best split into chunks with the chunk_split() function. This

adds \r\n inside the file at regular intervals, normally every 76 characters.

Following is the example which will send a file /tmp/test.txt as an attachment. you can

code your program to receive an uploaded file and send it.

<html>

<head>

<title>Sending attachment using PHP</title>

</head>

<body>

<?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is test message.";

 # Open a file

 $file = fopen("/tmp/test.txt", "r");

 if($file == false)

 {

 echo "Error in opening file";

 exit();

 }

 # Read the file into a variable

 $size = filesize("/tmp/test.txt");

 $content = fread($file, $size);

 PHP

93

 # encode the data for safe transit

 # and insert \r\n after every 76 chars.

 $encoded_content = chunk_split(base64_encode($content));

 # Get a random 32 bit number using time() as seed.

 $num = md5(time());

 # Define the main headers.

 $header = "From:xyz@somedomain.com\r\n";

 $header .= "MIME-Version: 1.0\r\n";

 $header .= "Content-Type: multipart/mixed; ";

 $header .= "boundary=$num\r\n";

 $header .= "--$num\r\n";

 # Define the message section

 $header .= "Content-Type: text/plain\r\n";

 $header .= "Content-Transfer-Encoding:8bit\r\n\n";

 $header .= "$message\r\n";

 $header .= "--$num\r\n";

 # Define the attachment section

 $header .= "Content-Type: multipart/mixed; ";

 $header .= "name=\"test.txt\"\r\n";

 $header .= "Content-Transfer-Encoding:base64\r\n";

 $header .= "Content-Disposition:attachment; ";

 $header .= "filename=\"test.txt\"\r\n\n";

 $header .= "$encoded_content\r\n";

 $header .= "--$num--";

 # Send email now

 $retval = mail ($to, $subject, "", $header);

 if($retval == true)

 {

 echo "Message sent successfully...";

 }

 else

 {

 PHP

94

 echo "Message could not be sent...";

 }

?>

</body>

</html>

You try all the above examples. If you face any problems, then you can post it in our

discussion forum.

 PHP

95

A PHP script can be used with a HTML form to allow users to upload files to the server.

Initially files are uploaded into a temporary directory and then relocated to a target

destination by a PHP script.

Information in the phpinfo.php page describes the temporary directory that is used for

file uploads as upload_tmp_dir and the maximum permitted size of files that can be

uploaded is stated as upload_max_filesize. These parameters are set into PHP

configuration filephp.ini

The process of uploading a file follows these steps:

 The user opens the page containing a HTML form featuring a text files, a browse

button and a submit button.

 The user clicks the browse button and selects a file to upload from the local PC.

 The full path to the selected file appears in the text field, then the user clicks the

submit button.

 The selected file is sent to the temporary directory on the server.

 The PHP script that was specified as the form handler in the form's action attribute

checks that the file has arrived and then copies the file into an intended directory.

 The PHP script confirms the success to the user.

As usual, while writing files, it is necessary for both temporary and final locations to have

permissions set that enable file writing. If either is set to be read-only, then process will

fail.

An uploaded file could be a text file or image file or any document.

Creating an Upload Form

The following HTML code creates an uploader form. This form is having method attribute

set to post and enctype attribute is set to multipart/form-data

<html>

<head>

<title>File Uploading Form</title>

</head>

<body>

<h3>File Upload:</h3>

Select a file to upload:

 PHP ─ File Uploading

 PHP

96

<form action="/php/file_uploader.php" method="post"

 enctype="multipart/form-data">

<input type="file" name="file" size="50" />

<input type="submit" value="Upload File" />

</form>

</body>

</html>

This will display the following result:

Creating an upload script

There is one global PHP variable called $_FILES. This variable is an associate double

dimension array and keeps all the information related to uploaded file. So if the value

assigned to the input's name attribute in uploading form was file, then PHP would create

the following five variables:

 $_FILES['file']['tmp_name']- the uploaded file in the temporary directory on

the web server.

 $_FILES['file']['name'] - the actual name of the uploaded file.

 $_FILES['file']['size'] - the size in bytes of the uploaded file.

 $_FILES['file']['type'] - the MIME type of the uploaded file.

 $_FILES['file']['error'] - the error code associated with this file upload.

 PHP

97

The following example should allow upload images and return the uploaded file

information.

<?php

if($_FILES['file']['name'] != "")

{

 copy($_FILES['file']['name'], "/var/www/html") or

 die("Could not copy file!");

}

else

{

 die("No file specified!");

}

?>

<html>

<head>

<title>Uploading Complete</title>

</head>

<body>

<h2>Uploaded File Info:</h2>

Sent file: <?php echo $_FILES['file']['name']; ?>

File size: <?php echo $_FILES['file']['size']; ?> bytes

File type: <?php echo $_FILES['file']['type']; ?>

</body>

</html>

It will produce the following result:

 PHP

98

Every company follows a different coding standard based on their best practices. Coding

standard is required because there may be many developers working on different modules.

If they start inventing their own standards, then the source will become very un-

manageable and it will become difficult to maintain that source code in future.

Here are several reasons why to use coding specifications:

 Your peer programmers have to understand the code you produce. A coding

standard acts as the blueprint for all the team to decipher the code.

 Simplicity and clarity achieved by consistent coding saves you from common

mistakes.

 If you revise your code after some time, then it becomes easy to understand that

code.

There are a few guidelines which can be followed while coding in PHP.

 Indenting and Line Length - Use an indent of 4 spaces and don't use any tab

because different computers use different setting for tab. It is recommended to

keep lines at approximately 75-85 characters long for better code readability.

 Control Structures - These include if, for, while, switch, etc. Control statements

should have one space between the control keyword and opening parenthesis, to

distinguish them from function calls. You are strongly encouraged to always use

curly braces even in situations where they are technically optional.

Example

if ((condition1) || (condition2)) {

 action1;

} elseif ((condition3) && (condition4)) {

 action2;

} else {

 default action;

}

You can write switch statements as follows:

switch (condition) {

case 1:

 action1;

 break;

 PHP ─ Coding Standard

 PHP

99

case 2:

 action2;

 break;

default:

 defaultaction;

 break;

}

Function Calls - Functions should be called with no spaces between the function name,

the opening parenthesis, and the first parameter; spaces between commas and each

parameter, and no space between the last parameter, the closing parenthesis, and the

semicolon. Here's an example:

$var = foo($bar, $baz, $quux);

Function Definitions - Function declarations follow the "BSD/Allman style":

function fooFunction($arg1, $arg2 = '')

{

 if (condition) {

 statement;

 }

 return $val;

}

Comments - C style comments (/* */) and standard C++ comments (//) are both fine.

Use of Perl/shell style comments (#) is discouraged.

PHP Code Tags - Always use <?php ?> to delimit PHP code, not the <? ?> shorthand.

This is required for PHP compliance and is also the most portable way to include PHP code

on differing operating systems and setups.

Variable Names -

 Use all lower case letters

 Use '_' as the word separator.

 Global variables should be prepended with a 'g'.

 Global constants should be all caps with '_' separators.

 Static variables may be prepended with 's'.

Make Functions Reentrant - Functions should not keep static variables that prevent a

function from being reentrant.

Alignment of Declaration Blocks - Block of declarations should be aligned.

 PHP

100

One Statement Per Line - There should be only one statement per line unless the

statements are very closely related.

Short Methods or Functions - Methods should limit themselves to a single page of code.

There could be many more points which should be considered while writing your PHP

program. Over all intension should be to be consistent throughout of the code

programming and it will be possible only when you will follow any coding standard. You

can device your own standard if you like something different.

 PHP

101

Part 2: Advanced PHP

 PHP

102

PHP provides a large number of predefined variables to any script which it runs. PHP

provides an additional set of predefined arrays containing variables from the web server

the environment, and user input. These new arrays are called superglobals:

All the following variables are automatically available in every scope.

PHP Superglobals

Variable Description

$GLOBALS Contains a reference to every variable which is currently available

within the global scope of the script. The keys of this array are the

names of the global variables.

$_SERVER This is an array containing information such as headers, paths, and

script locations. The entries in this array are created by the web

server. There is no guarantee that every web server will provide any

of these. See next section for a complete list of all the SERVER

variables.

$_GET An associative array of variables passed to the current script via the

HTTP GET method.

$_POST An associative array of variables passed to the current script via the

HTTP POST method.

$_FILES An associative array of items uploaded to the current script via the

HTTP POST method.

$_REQUEST An associative array consisting of the contents of $_GET, $_POST, and

$_COOKIE.

$_COOKIE An associative array of variables passed to the current script via HTTP

cookies.

$_SESSION An associative array containing session variables available to the

current script.

$_PHP_SELF A string containing PHP script file name in which it is called.

$php_errormsg $php_errormsg is a variable containing the text of the last error

message generated by PHP.

 PHP ─ Predefined Variables

 PHP

103

Server variables: $_SERVER

$_SERVER is an array containing information such as headers, paths, and script locations.

The entries in this array are created by the web server. There is no guarantee that every

web server will provide any of these.

Variable Description

$_SERVER['PHP_SELF']
The filename of the currently executing

script, relative to the document root

$_SERVER['argv']

Array of arguments passed to the script.

When the script is run on the command line,

this gives C-style access to the command line

parameters. When called via the GET method,

this will contain the query string.

$_SERVER['argc']

Contains the number of command line

parameters passed to the script if run on the

command line.

$_SERVER['GATEWAY_INTERFACE']
What revision of the CGI specification the

server is using; i.e. 'CGI/1.1'.

$_SERVER['SERVER_ADDR']
The IP address of the server under which the

current script is executing.

$_SERVER['SERVER_NAME']

The name of the server host under which the

current script is executing. If the script is

running on a virtual host, this will be the

value defined for that virtual host.

$_SERVER['SERVER_SOFTWARE']
Server identification string, given in the

headers when responding to requests.

$_SERVER['SERVER_PROTOCOL']

Name and revision of the information protocol

via which the page was requested; i.e.

'HTTP/1.0';

$_SERVER['REQUEST_METHOD']
Which request method was used to access the

page; i.e. 'GET', 'HEAD', 'POST', 'PUT'.

$_SERVER['REQUEST_TIME']
The timestamp of the start of the request.

Available since PHP 5.1.0.

$_SERVER['QUERY_STRING']
The query string, if any, via which the page

was accessed.

$_SERVER['DOCUMENT_ROOT']

The document root directory under which the

current script is executing, as defined in the

server's configuration file.

 PHP

104

$_SERVER['HTTP_ACCEPT']
Contents of the Accept: header from the

current request, if there is one.

$_SERVER['HTTP_ACCEPT_CHARSET']

Contents of the Accept-Charset: header from

the current request, if there is one. Example:

'iso-8859-1,*,utf-8'.

$_SERVER['HTTP_ACCEPT_ENCODING']

Contents of the Accept-Encoding: header

from the current request, if there is one.

Example: 'gzip'.

$_SERVER['HTTP_ACCEPT_LANGUAGE']

Contents of the Accept-Language: header

from the current request, if there is one.

Example: 'en'.

$_SERVER['HTTP_CONNECTION']

Contents of the Connection: header from the

current request, if there is one. Example:

'Keep-Alive'.

$_SERVER['HTTP_HOST']
Contents of the Host: header from the current

request, if there is one.

$_SERVER['HTTP_REFERER']
The address of the page (if any) which

referred the user agent to the current page.

$_SERVER['HTTP_USER_AGENT']

This is a string denoting the user agent being

which is accessing the page. A typical

example is: Mozilla/4.5 [en] (X11; U; Linux

2.2.9 i586).

$_SERVER['HTTPS']
Set to a non-empty value if the script was

queried through the HTTPS protocol.

$_SERVER['REMOTE_ADDR']
The IP address from which the user is viewing

the current page.

$_SERVER['REMOTE_HOST']

The Host name from which the user is viewing

the current page. The reverse dns lookup is

based off the REMOTE_ADDR of the user.

$_SERVER['REMOTE_PORT']
The port being used on the user's machine to

communicate with the web server.

$_SERVER['SCRIPT_FILENAME']
The absolute pathname of the currently

executing script.

$_SERVER['SERVER_ADMIN']

The value given to the SERVER_ADMIN (for

Apache) directive in the web server

configuration file.

$_SERVER['SERVER_PORT']

The port on the server machine being used by

the web server for communication. For

default setups, this will be '80'.

 PHP

105

$_SERVER['SERVER_SIGNATURE']

String containing the server version and

virtual host name which are added to server-

generated pages, if enabled.

$_SERVER['PATH_TRANSLATED'] Filesystem based path to the current script.

$_SERVER['SCRIPT_NAME']

Contains the current script's path. This is

useful for pages which need to point to

themselves.

$_SERVER['REQUEST_URI']
The URI which was given in order to access

this page; for instance, '/index.html'.

$_SERVER['PHP_AUTH_DIGEST']

When running under Apache as module doing

Digest HTTP authentication this variable is set

to the 'Authorization' header sent by the

client.

$_SERVER['PHP_AUTH_USER']

When running under Apache or IIS (ISAPI on

PHP 5) as module doing HTTP authentication

this variable is set to the username provided

by the user.

$_SERVER['PHP_AUTH_PW']

When running under Apache or IIS (ISAPI on

PHP 5) as module doing HTTP authentication

this variable is set to the password provided

by the user.

$_SERVER['AUTH_TYPE']

When running under Apache as module doing

HTTP authenticated this variable is set to the

authentication type.

 PHP

106

Regular expressions are nothing more than a sequence or pattern of characters itself. They

provide the foundation for pattern-matching functionality.

Using regular expression you can search a particular string inside another string, you can

replace one string by another string and you can split a string into many chunks.

PHP offers functions specific to two sets of regular expression functions, each

corresponding to a certain type of regular expression. You can use any of them based on

your comfort.

 POSIX Regular Expressions

 PERL Style Regular Expressions

POSIX Regular Expressions

The structure of a POSIX regular expression is not dissimilar to that of a typical arithmetic

expression: various elements (operators) are combined to form more complex

expressions.

The simplest regular expression is one that matches a single character, such as g, inside

strings such as g, haggle, or bag.

Let us discuss a few concepts being used in POSIX regular expression. After that, we will

introduce you to regular expression related functions.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions.

They are used to find a range of characters.

Expression Description

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through lowercase z.

[A-Z] It matches any character from uppercase A through uppercase Z.

[a-Z] It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any

decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase

character ranging from b through v.

 PHP ─ Regular Expression

 PHP

107

Quantifiers

The frequency or position of bracketed character sequences and single characters can be

denoted by a special character. Each special character having a specific connotation. The

+, *, ?, {int. range}, and $ flags all follow a character sequence.

Expression Description

p+ It matches any string containing at least one p.

p* It matches any string containing zero or more p's.

p? It matches any string containing zero or more p's. This is just an

alternative way to use p*.

p{N} It matches any string containing a sequence of N p's

p{2,3} It matches any string containing a sequence of two or three p's.

p{2, } It matches any string containing a sequence of at least two p's.

p$ It matches any string with p at the end of it.

^p It matches any string with p at the beginning of it.

Examples

Following examples will clear your concepts about matching characters.

Expression Description

[^a-zA-Z] It matches any string not containing any of the characters ranging from

a through z and A through Z.

p.p It matches any string containing p, followed by any character, in turn

followed by another p.

^.{2}$ It matches any string containing exactly two characters.

(.*) It matches any string enclosed within and .

p(hp)* It matches any string containing a p followed by zero or more instances

of the sequence hp.

Predefined Character Ranges

For your programming convenience several predefined character ranges, also known as

character classes, are available. Character classes specify an entire range of characters,

for example, the alphabet or an integer set:

 PHP

108

Expression Description

[[:alpha:]] It matches any string containing alphabetic characters aA through zZ.

[[:digit:]] It matches any string containing numerical digits 0 through 9.

[[:alnum:]] It matches any string containing alphanumeric characters aA through zZ

and 0 through 9.

[[:space:]] It matches any string containing a space.

PHP's Regexp POSIX Functions

PHP currently offers seven functions for searching strings using POSIX-style regular

expressions:

Function Description

ereg() The ereg() function searches a string specified by string for a

string specified by pattern, returning true if the pattern is

found, and false otherwise.

ereg_replace() The ereg_replace() function searches for string specified by

pattern and replaces pattern with replacement if found.

eregi() The eregi() function searches throughout a string specified by

pattern for a string specified by string. The search is not case

sensitive.

eregi_replace() The eregi_replace() function operates exactly like

ereg_replace(), except that the search for pattern in string is

not case sensitive.

split() The split() function will divide a string into various elements,

the boundaries of each element based on the occurrence of

pattern in string.

spliti() The spliti() function operates exactly in the same manner as its

sibling split(), except that it is not case sensitive.

sql_regcase() The sql_regcase() function can be thought of as a utility

function, converting each character in the input parameter

string into a bracketed expression containing two characters.

PHP ─ Function ereg()

Syntax

int ereg(string pattern, string originalstring, [array regs]);

 PHP

109

Definition and Usage

The ereg() function searches a string specified by string for a string specified by pattern,

returning true if the pattern is found, and false otherwise. The search is case sensitive in

regard to alphabetical characters.

The optional input parameter regs contains an array of all matched expressions that were

grouped by parentheses in the regular expression.

Return Value

 It returns true if the pattern is found, and false otherwise.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $email_id = "admin@tutorialspoint.com";

 $retval = ereg("(\.)(com$)", $email_id);

 if($retval == true)

 {

 echo "Found a .com
";

 }

 else

 {

 echo "Could not found a .com
";

 }

 $retval = ereg(("(\.)(com$)"), $email_id, $regs);

 if($retval == true)

 {

 echo "Found a .com and reg = ". $regs[0];

 }

 else

 {

 echo "Could not found a .com";

 }

?>

 PHP

110

This will produce the following result −

PHP ─ Function ereg_replace()

Syntax

string ereg_replace (string pattern, string replacement, string
originalstring);

Definition and Usage

The ereg_replace() function searches for string specified by pattern and replaces pattern

with replacement if found. The ereg_replace() function operates under the same premises

as ereg(), except that the functionality is extended to finding and replacing pattern instead

of simply locating it.

Like ereg(), ereg_replace() is case sensitive.

Return Value

 After the replacement has occurred, the modified string will be returned.

 If no matches are found, the string will remain unchanged.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $copy_date = "Copyright 1999";

 $copy_date = ereg_replace("([0-9]+)", "2000", $copy_date);

 print $copy_date;

?>

 PHP

111

This will produce the following result −

PHP ─ Function eregi()

Syntax

int eregi(string pattern, string string, [array regs]);

Definition and Usage

The eregi() function searches throughout a string specified by pattern for a string specified

by string. The search is not case sensitive. Eregi() can be particularly useful when checking

the validity of strings, such as passwords.

The optional input parameter regs contains an array of all matched expressions that were

grouped by parentheses in the regular expression.

Return Value

 It returns true if the pattern is validated, and false otherwise.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $password = "abc";

 if (! eregi ("[[:alnum:]]{8,10}", $password))

 {

 print "Invalid password! Passwords must be from 8 - 10 chars";

 }

 else

 {

 print "Valid password";

 PHP

112

 }

?>

This will produce the following result −

Invalid password! Passwords must be from 8 - 10 chars

PHP ─ Function eregi_replace()

Syntax

string eregi_replace (string pattern, string replacement, string
originalstring);

Definition and Usage

The eregi_replace() function operates exactly like ereg_replace(), except that the search

for pattern in string is not case sensitive.

Return Value

 After the replacement has occurred, the modified string will be returned.

 If no matches are found, the string will remain unchanged.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $copy_date = "Copyright 2000";

 $copy_date = eregi_replace("([a-z]+)", "&Copy;", $copy_date);

 print $copy_date;

?>

This will produce the following result −

 PHP

113

PHP ─ Function split()

Syntax

array split (string pattern, string string [, int limit])

Definition and Usage

The split() function will divide a string into various elements, the boundaries of each

element based on the occurrence of pattern in string.

The optional input parameter limit is used to signify the number of elements into which

the string should be divided, starting from the left end of the string and working rightward.

In cases where the pattern is an alphabetical character, split() is case sensitive.

Return Value

 Returns an array of strings after splitting up a string.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $ip = "123.456.789.000"; // some IP address

 $iparr = split ("\.", $ip);

 print "$iparr[0]
";

 print "$iparr[1]
" ;

 print "$iparr[2]
" ;

 print "$iparr[3]
" ;

?>

This will produce the following result −

 PHP

114

PHP ─ Function spliti()

Syntax

array spliti (string pattern, string string [, int limit])

Definition and Usage

The spliti() function operates exactly in the same manner as its sibling split(), except that

it is not case sensitive. Case-sensitive characters are an issue only when the pattern is

alphabetical. For all other characters, spliti() operates exactly as split() does.

Return Value

 Returns an array of strings after splitting up a string.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $ip = "123.456.789.000"; // some IP address

 $iparr = spliti ("\.", $ip, 3);

 print "$iparr[0]
";

 print "$iparr[1]
" ;

 print "$iparr[2]
" ;

 print "$iparr[3]
" ;

?>

This will produce only three strings as we have limited number of strings to be produced.

 PHP

115

PHP ─ Function sql_regcase()

Syntax

string sql_regcase (string string)

Definition and Usage

The sql_regcase() function can be thought of as a utility function, converting each

character in the input parameter string into a bracketed expression containing two

characters.

If the alphabetical character has both an uppercase and a lowercase format, the bracket

will contain both forms; otherwise the original character will be repeated twice.

Return Value

 Returns a string of bracketed expression along with the converted character.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $version = "php 4.0";

 print sql_regcase($version);

?>

This will produce the following result −

PERL Style Regular Expressions

Perl-style regular expressions are similar to their POSIX counterparts. The POSIX syntax

can be used almost interchangeably with the Perl-style regular expression functions. In

fact, you can use any of the quantifiers introduced in the previous POSIX section.

 PHP

116

Let us discuss a few concepts being used in PERL regular expressions. After that, we will

introduce you with regular expression related functions.

Metacharacters

A metacharacter is simply an alphabetical character preceded by a backslash that acts to

give the combination a special meaning.

For instance, you can search for large money sums using the '\d'
metacharacter:/([\d]+)000/, Here \d will search for any string of numerical character.

Following is the list of metacharacters which can be used in PERL Style Regular

Expressions.

Character Description
. a single character
\s a whitespace character (space, tab, newline)
\S non-whitespace character
\d a digit (0-9)
\D a non-digit
\w a word character (a-z, A-Z, 0-9, _)
\W a non-word character
[aeiou] matches a single character in the given set
[^aeiou] matches a single character outside the given set
(foo|bar|baz) matches any of the alternatives specified

Modifiers

Several modifiers are available that can make your work with regexps much easier, like

case sensitivity, searching in multiple lines etc.

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage

 return characters, the ^ and $ operators will now

 match against a newline boundary, instead of a

 string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression for clarity

g Globally finds all matches

cg Allows a search to continue even after a global match fails

 PHP

117

PHP's Regexp PERL Compatible Functions

PHP offers the following functions for searching strings using Perl-compatible regular

expressions:

Function Description

preg_match() The preg_match() function searches string for pattern, returning

true if pattern exists, and false otherwise.

preg_match_all() The preg_match_all() function matches all occurrences of pattern

in string.

preg_replace() The preg_replace() function operates just like ereg_replace(),

except that regular expressions can be used in the pattern and

replacement input parameters.

preg_split() The preg_split() function operates exactly like split(), except that

regular expressions are accepted as input parameters for pattern.

preg_grep() The preg_grep() function searches all elements of input_array,

returning all elements matching the regexp pattern.

preg_ quote() Quote regular expression characters

PHP ─ Function preg_match()

Syntax

int preg_match (string pattern, string string [, array pattern_array], [, int
$flags [, int $offset]]]);

Definition and Usage

The preg_match() function searches string for pattern, returning true if pattern exists, and

false otherwise.

If the optional input parameter pattern_array is provided, then pattern_array will contain

various sections of the subpatterns contained in the search pattern, if applicable.

If this flag is passed as PREG_OFFSET_CAPTURE, for every occurring match the appendant

string offset will also be returned

Normally, the search starts from the beginning of the subject string. The optional

parameter offset can be used to specify the alternate place from which to start the search.

Return Value

 Returns true if pattern exists, and false otherwise.

 PHP

118

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $line = "Vi is the greatest word processor ever created!";

 // perform a case-Insensitive search for the word "Vi"

 if (preg_match("/\bVi\b/i", $line, $match)) :

 print "Match found!";

 endif;

?>

This will produce the following result −

PHP ─ Function preg_match_all()

Syntax

int preg_match_all (string pattern, string string, array pattern_array [, int
order]);

Definition and Usage

The preg_match_all() function matches all occurrences of pattern in string.

It will place these matches in the array pattern_array in the order you specify using the

optional input parameter order. There are two possible types of order –

 PREG_PATTERN_ORDER −REG_PATTERN_ORDERe matches in the array

pattern_array in the od. PREG_PATTERN_ORDER specifies the order in the way

that you might think most logical; $pattern_array[0] is an array of all complete

pattern matches, $pattern_array[1] is an array of all strings matching the first

parenthesized regexp, and so on.

 PREG_SET_ORDER −REG_SET_ORDERRDERe matches in the array

pattern_array in the od. PREG_PATTERN_ORDER specifies the order in the way

 PHP

119

that you migparenthesized regexp, $pattern_array[1] will contain elements

matched by the second parenthesized regexp, and so on.

Return Value

 Returns the number of matchings.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $userinfo = "Name: John Poul
 Title: PHP Guru";

 preg_match_all ("/(.*)<\/b>/U", $userinfo, $pat_array);

 print $pat_array[0][0]."
 ".$pat_array[0][1]."\n";

?>

This will produce the following result –

PHP ─ Function preg_replace()

Syntax

mixed preg_replace (mixed pattern, mixed replacement, mixed string [, int limit
[, int &$count]]);

Definition and Usage

The preg_replace() function operates just like POSIX function ereg_replace(), except that

regular expressions can be used in the pattern and replacement input parameters.

The optional input parameter limit specifies how many matches should take place.

If the optional parameter $count is passed, then this variable will be filled with the number

of replacements done.

 PHP

120

Return Value

 After the replacement has occurred, the modified string will be returned.

 If no matches are found, the string will remain unchanged.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $copy_date = "Copyright 1999";

 $copy_date = preg_replace("([0-9]+)", "2000", $copy_date);

 print $copy_date;

?>

This will produce the following result −

PHP ─ Function preg_split()

Syntax

array preg_split (string pattern, string string [, int limit [, int flags]]);

Definition and Usage

The preg_split() function operates exactly like split(), except that regular expressions are

accepted as input parameters for pattern.

If the optional input parameter limit is specified, then only limit number of substrings are

returned.

 PHP

121

flags can be any combination of the following types –

 PREG_SPLIT_NO_EMPTY −REG_SPLIT_NO_EMPTYmbination of the following

fied, then only limit number of s

 PREG_SPLIT_DELIM_CAPTURE −REG_SPLIT_DELIM_CAPTUREtion of the

following fied, then only limit number of substrings are returned.as input p

 PREG_SPLIT_OFFSET_CAPTURE −REG_SPLIT_Oag is set, for every occurring

match the appendant string offset will also be returned.

Return Value

 Returns an array of strings after splitting up a string.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $ip = "123.456.789.000"; // some IP address

 $iparr = split ("/\./", $ip);

 print "$iparr[0]
";

 print "$iparr[1]
" ;

 print "$iparr[2]
" ;

 print "$iparr[3]
" ;

?>

This will produce the following result −

PHP ─ Function preg_grep()

Syntax

 PHP

122

array preg_grep (string $pattern, array $input [, int $flags]);

Definition and Usage

Returns the array consisting of the elements of the input array that match the given

pattern.

If flag is set to PREG_GREP_INVERT, this function returns the elements of the input array

that do not match the given pattern.

Return Value

 Returns an array indexed using the keys from the input array.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $foods = array("pasta", "steak", "fish", "potatoes");

 // find elements beginning with "p", followed by one or more letters.

 $p_foods = preg_grep("/p(\w+)/", $foods);

 print "Found food is " . $p_foods[0];

 print "Found food is " . $p_foods[1];

?>

This will produce the following result −

PHP ─ Function preg_quote()

Syntax

 PHP

123

string preg_quote (string $str [, string $delimiter]);

Definition and Usage

preg_quote() takes str and puts a backslash in front of every character that is part of the

regular expression syntax.

Return Value

 Returns the quoted string.

Example

Following is the piece of code, copy and paste this code into a file and verify the result.

<?php

 $keywords = '$40 for a g3/400';

 $keywords = preg_quote($keywords, '/');

 echo $keywords;

?>

This will produce the following result –

 PHP

124

Error handling is the process of catching errors raised by your program and then taking

appropriate action. If you would handle errors properly, then it may lead to many

unforeseen consequences. It is very simple in PHP to handle errors.

Using die() function

While writing your PHP program you should check all possible error condition before going

ahead and take appropriate action when required.

Try the following example without having /tmp/test.xt file and with this file.

<?php

if(!file_exists("/tmp/test.txt"))

 {

 die("File not found");

 }

else

 {

 $file=fopen("/tmp/test.txt","r");

 print "Opend file sucessfully";

 }

 // Test of the code here.

?>

You can thus write an efficient code. Using the above technique, you can stop your

program whenever it errors out and display more meaningful and user-friendly message.

Defining Custom Error Handling Function

You can write your own function to handling any error. PHP provides you a framework to

define error-handling function.

This function must be able to handle a minimum of two parameters (error level and error

message) but can accept up to five parameters (optionally: file, line-number, and the error

context):

Syntax

error_function(error_level,error_message, error_file,error_line,error_context);

 PHP ─ Error and Exception Handling

 PHP

125

Parameter Description

error_level Required - Specifies the error report level for the user-defined error.

Must be a value number.

error_message Required - Specifies the error message for the user-defined error

error_file Optional - Specifies the filename in which the error occurred

error_line Optional - Specifies the line number in which the error occurred

error_context Optional - Specifies an array containing every variable and their values

in use when the error occurred

Possible Error levels

These error report levels are the different types of error the user-defined error handler

can be used for. These values cab used in combination using | operator

Value Constant Description

1 E_ERROR Fatal run-time errors. Execution of the script is

halted

2 E_WARNING Non-fatal run-time errors. Execution of the script is

not halted

4 E_PARSE Compile-time parse errors. Parse errors should only

be generated by the parser.

8 E_NOTICE Run-time notices. The script found something that

might be an error, but could also happen when

running a script normally

16 E_CORE_ERROR Fatal errors that occur during PHP's initial startup.

32 E_CORE_WARNING Non-fatal run-time errors. This occurs during PHP's

initial startup.

256 E_USER_ERROR Fatal user-generated error. This is like an E_ERROR

set by the programmer using the PHP function

trigger_error()

512 E_USER_WARNING Non-fatal user-generated warning. This is like an

E_WARNING set by the programmer using the PHP

function trigger_error()

1024 E_USER_NOTICE User-generated notice. This is like an E_NOTICE set

by the programmer using the PHP function

trigger_error()

 PHP

126

2048 E_STRICT Run-time notices. Enable to have PHP suggest

changes to your code which will ensure the best

interoperability and forward compatibility of your

code.

4096 E_RECOVERABLE_ERROR Catchable fatal error. This is like an E_ERROR but

can be caught by a user defined handle (see also

set_error_handler())

8191 E_ALL All errors and warnings, except level E_STRICT

(E_STRICT will be part of E_ALL as of PHP 6.0)

All the above error level can be set using the following PHP built-in library function where

level cab be any of the value defined in above table.

int error_reporting ([int $level])

Here is how you can create an error handling function:

<?php
function handleError($errno, $errstr,$error_file,$error_line)
{
 echo "Error: [$errno] $errstr - $error_file:$error_line";

 echo "
";

 echo "Terminating PHP Script";

 die();

}

?>

Once you define your custom error handler, you need to set it using PHP built-in library

set_error_handler function. Now let’s examine our example by calling a function which

does not exist.

<?php

error_reporting(E_ERROR);

function handleError($errno, $errstr,$error_file,$error_line)

{

 echo "Error: [$errno] $errstr - $error_file:$error_line";

 echo "
";

 echo "Terminating PHP Script";

 die();

}

//set error handler

set_error_handler("handleError");

//trigger error

 PHP

127

myFunction();

?>

Exceptions Handling

PHP 5 has an exception model similar to that of other programming languages. Exceptions

are important and provides a better control over error handling.

Let’s now explain the new keyword related to exceptions.

 Try - A function using an exception should be in a "try" block. If the exception does

not trigger, the code will continue as normal. However if the exception triggers, an

exception is "thrown".

 Throw - This is how you trigger an exception. Each "throw" must have at least one

"catch".

 Catch - - A "catch" block retrieves an exception and creates an object containing

the exception information.

When an exception is thrown, the code following the statement will not be executed, and

PHP will attempt to find the first matching catch block. If an exception is not caught, a PHP

Fatal Error will be issued with an "Uncaught Exception ...

 An exception can be thrown, and caught ("catched") within PHP. Code may be

surrounded in a try block.

 Each try must have at least one corresponding catch block. Multiple catch blocks

can be used to catch different classes of exceptions.

 Exceptions can be thrown (or re-thrown) within a catch block.

Example

Copy and paste the following piece of code into a file and verify the result.

<?php

try {

 $error = 'Always throw this error';

 throw new Exception($error);

 // Code following an exception is not executed.

 echo 'Never executed';

} catch (Exception $e) {

 echo 'Caught exception: ', $e->getMessage(), "\n";

}

 PHP

128

// Continue execution

echo 'Hello World';

?>

In the above example, $e->getMessage function is used to get error message. The

following functions can be used from Exception class.

 getMessage()- message of exception

 getCode() - code of exception

 getFile() - source filename

 getLine() - source line

 getTrace() - n array of the backtrace()

 getTraceAsString() - formated string of trace

Creating Custom Exception Handler

You can define your own custom exception handler. Use the following function to set a

user-defined exception handler function.

string set_exception_handler (callback $exception_handler)

Here exception_handler is the name of the function to be called when an uncaught

exception occurs. This function must be defined before calling set_exception_handler().

Example

<?php

function exception_handler($exception) {

 echo "Uncaught exception: " , $exception->getMessage(), "\n";

}

set_exception_handler('exception_handler');

throw new Exception('Uncaught Exception');

echo "Not Executed\n";

?>

Check the complete set of error handling functions at PHP Error Handling Functions.

http://www.tutorialspoint.com/php/php_error_handling_functions.htm

 PHP

129

Programs rarely work correctly the first time. Many things can go wrong in your program

that cause the PHP interpreter to generate an error message. You have a choice about

where those error messages go. The messages can be sent along with other program

output to the web browser. They can also be included in the web server error log.

To make error messages display in the browser, set the display_errors configuration

directive to On. To send errors to the web server error log, set log_errors to On. You can

set them both to On if you want error messages in both places.

PHP defines some constants you can use to set the value of error_reporting such that

only errors of certain types get reported: E_ALL (for all errors except strict notices),

E_PARSE (parse errors), E_ERROR (fatal errors), E_WARNING (warnings), E_NOTICE

(notices), and E_STRICT (strict notices).

While writing your PHP program, it is a good idea to use PHP-aware editors like BBEdit or

Emacs. One of the special features of these editors is syntax highlighting. It changes the

color of different parts of your program based on what those parts are. For example,

strings are pink, keywords such as if and while are blue, comments are grey, and variables

are black.

Another feature is quote and bracket matching, which helps to make sure that your quotes

and brackets are balanced. When you type a closing delimiter such as }, the editor

highlights the opening { that it matches.

You need to verify the following points while debugging your program.

 Missing Semicolons - Every PHP statement ends with a semicolon (;). PHP

doesn't stop reading a statement until it reaches a semicolon. If you leave out the

semicolon at the end of a line, PHP continues reading the statement on the following

line.

 Not Enough Equal Signs - When you ask whether two values are equal in a

comparison statement, you need two equal signs (==). Using one equal sign is a

common mistake.

 Misspelled Variable Names - If you misspelled a variable, then PHP understands

it as a new variable. Remember: To PHP, $test is not the same variable as $Test.

 Missing Dollar Signs - A missing dollar sign in a variable name is really hard to

see, but at least it usually results in an error message so that you know where to

look for the problem.

 Troubling Quotes - You can have too many, too few, or the wrong kind of quotes.

So check for a balanced number of quotes.

 Missing Parentheses and curly brackets - They should always be in pairs.

 Array Index - All the arrays should start from zero instead of 1.

 PHP ─ Bugs Debugging

 PHP

130

Moreover, handle all the errors properly and direct all trace messages into system log file

so that if any problem occurs, then it will be logged into system log file and you will be

able to debug that problem.

 PHP

131

Dates are so much part of everyday life that it becomes easy to work with them without

thinking. PHP also provides powerful tools for date arithmetic that make manipulating

dates easy.

Getting the Time Stamp with time()

PHP's time() function gives you all the information that you need about the current date

and time. It requires no arguments but returns an integer.

The integer returned by time() represents the number of seconds elapsed since midnight

GMT on January 1, 1970. This moment is known as the UNIX epoch, and the number of

seconds that have elapsed since then is referred to as a time stamp.

<?php

print time();

?>

It will produce the following result:

This is something difficult to understand. But PHP offers excellent tools to convert a time

stamp into a form that humans are comfortable with.

Converting a Time Stamp with getdate()

The function getdate() optionally accepts a timestamp and returns an associative array

containing information about the date. If you omit the time stamp, it works with the

current time stamp as returned by time().

 PHP ─ Date and Time

 PHP

132

The following table lists the elements contained in the array returned by getdate().

Key Description Example

seconds Seconds past the minutes (0-59) 20

minutes Minutes past the hour (0 - 59) 29

hours Hours of the day (0 - 23) 22

mday Day of the month (1 - 31) 11

wday Day of the week (0 - 6) 4

mon Month of the year (1 - 12) 7

year Year (4 digits) 1997

yday Day of year (0 - 365) 19

weekday Day of the week Thursday

month Month of the year January

0 Timestamp 948370048

Now you have complete control over date and time. You can format this date and time in

whatever format you want.

Example

Try out the following example.

<?php

$date_array = getdate();

foreach ($date_array as $key => $val)

{

 print "$key = $val
";

}

$formated_date = "Today's date: ";

$formated_date .= $date_array[mday] . "/";

$formated_date .= $date_array[mon] . "/";

$formated_date .= $date_array[year];

print $formated_date;

?>

 PHP

133

It will produce the following result:

Converting a Time Stamp with date()

The date() function returns a formatted string representing a date. You can exercise an

enormous amount of control over the format that date() returns with a string argument

that you must pass to it.

date(format,timestamp)

The date() optionally accepts a time stamp if omitted, then current date and time will be

used. Any other data you include in the format string passed to date() will be included in

the return value.

The following table lists the codes that a format string can contain:

Format Description Example

a 'am' or 'pm' lowercase pm

A 'AM' or 'PM' uppercase PM

d Day of month, a number with leading zeroes 20

D Day of week (three letters) Thu

F Month name January

h Hour (12-hour format - leading zeroes) 12

H Hour (24-hour format - leading zeroes) 22

g Hour (12-hour format - no leading zeroes) 12

G Hour (24-hour format - no leading zeroes) 22

i Minutes (0 - 59) 23

 PHP

134

j Day of the month (no leading zeroes 20

l (Lower 'L') Day of the week Thursday

L Leap year ('1' for yes, '0' for no) 1

m Month of year (number - leading zeroes) 1

M Month of year (three letters) Jan

r The RFC 2822 formatted date Thu, 21 Dec

2000 16:01:07

+0200

n Month of year (number - no leading zeroes) 2

s Seconds of hour 20

U Time stamp 948372444

y Year (two digits) 06

Y Year (four digits) 2006

z Day of year (0 - 365) 206

Z Offset in seconds from GMT +5

Example

Try out the following example.

<?php

print date("m/d/y G.i:s
", time());

print "Today is ";

print date("j of F Y, \a\\t g.i a", time());

?>

It will produce following result:

 PHP

135

Hope you have a good understanding of how to format date and time according to your

requirement. For your reference a complete list of all the date and time functions is given

in PHP Date & Time Functions.

http://www.tutorialspoint.com/php/php_date_time_functions.htm

 PHP

136

PHP will work with virtually all database software, including Oracle and Sybase but most

commonly used is freely available MySQL database.

What you should already have?

 You have gone through MySQL tutorial to understand MySQL Basics.

 Downloaded and installed a latest version of MySQL.

 Created database user guest with password guest123.

 If you have not created a database, then you would need root user and its password

to create a database.

We have divided this chapter in the following sections:

 Connecting to MySQL database - Learn how to use PHP to open and close a

MySQL database connection.

 Create MySQL Database Using PHP - This part explains how to create MySQL

database and tables using PHP.

 Delete MySQL Database Using PHP - This part explains how to delete MySQL

database and tables using PHP.

 Insert Data To MySQL Database - Once you have created your database and

tables, then you would like to insert your data into created tables. This session will

take you through real example on data insert.

 Retrieving Data From MySQL Database - Learn how to fetch records from

MySQL database using PHP.

 Using Paging through PHP - This one explains how to show your query result

into multiple pages and how to create the navigation link.

 Updating Data Into MySQL Database - This part explains how to update

existing records into MySQL database using PHP.

 Deleting Data From MySQL Database - This part explains how to delete or

purge existing records from MySQL database using PHP.

 Using PHP To Backup MySQL Database - Learn different ways to take backup

of your MySQL database for safety purpose.

 PHP ─ PHP and MySQL

 PHP

137

Connecting to MySQL Database

Opening a Database Connection

PHP provides mysql_connect function to open a database connection. This function takes

five parameters and returns a MySQL link identifier on success, or FALSE on failure.

Syntax

connection mysql_connect(server,user,passwd,new_link,client_flag);

Sr.No Parameter & Description

1

server

Optional − The host name running database server. If not specified, then

default value is localhost:3306.

2

user

Optional − The username accessing the database. If not specified, then default

is the name of the user that owns the server process.

3

passwd

Optional − The password of the user accessing the database. If not specified

then default is an empty password.

4

new_link

Optional − If a second call is made to mysql_connect() with the same

arguments, no new connection will be established; instead, the identifier of

the already opened connection will be returned.

5

client_flags

Optional − A combination of the following constants −

 MYSQL_CLIENT_SSL − Use SSL encryption

 MYSQL_CLIENT_COMPRESS − Use compression protocol

 PHP

138

 MYSQL_CLIENT_IGNORE_SPACE − Allow space after function

names

 MYSQL_CLIENT_INTERACTIVE − Allow interactive timeout seconds

of inactivity before closing the connection

NOTE − You can specify server, user, passwd in php.ini file instead of using them again

and again in your every PHP scripts. Check php.ini fileconfiguration.

Closing Database Connection

Its simplest function mysql_close PHP provides to close a database connection. This

function takes connection resource returned by mysql_connect function. It returns TRUE

on success or FALSE on failure.

Syntax

bool mysql_close (resource $link_identifier);

If a resource is not specified, then the last opened database is closed.

Example

Try the following example to open and close a database connection −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'guest';

 $dbpass = 'guest123';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 mysql_close($conn);

?>

Create MySQL Database Using PHP

Creating a Database

http://www.tutorialspoint.com/php/php_ini_configuration.htm

 PHP

139

To create and delete a database, you should have admin privilege. It’s very easy to create

a new MySQL database. PHP uses mysql_query function to create a MySQL database.

This function takes two parameters and returns TRUE on success or FALSE on failure.

Syntax

bool mysql_query(sql, connection);

Sr.No Parameter & Description

1
sql

Required - SQL query to create a database

2
connection

Optional - if not specified, then the last opened connection by
mysql_connect will be used.

Example

Try the following example to create a database −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 $sql = 'CREATE Database test_db';

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create database: ' . mysql_error());

 PHP

140

 }

 echo "Database test_db created successfully\n";

 mysql_close($conn);

?>

Selecting a Database

Once you establish a connection with a database server, then it is required to select a

particular database with which all your tables are associated.

This is required because there may be multiple databases residing on a single server and

you can do work with a single database at a time.

PHP provides function mysql_select_db to select a database. It returns TRUE on success

or FALSE on failure.

Syntax

bool mysql_select_db(db_name, connection);

Sr.No Parameter & Description

1
db_name

Required - Database name to be selected

2
connection

Optional - if not specified, then the last opened connection by
mysql_connect will be used.

Example

Here is the example showing you how to select a database.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'guest';

 $dbpass = 'guest123';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 PHP

141

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 mysql_select_db('test_db');

 mysql_close($conn);

?>

Creating Database Tables

To create tables in the new database, you need to do the same thing as creating the

database. First create the SQL query to create the tables, then execute the query using

mysql_query() function.

Example

Try the following example to create a table −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 $sql = 'CREATE TABLE employee('.

 'emp_id INT NOT NULL AUTO_INCREMENT, '.

 'emp_name VARCHAR(20) NOT NULL, '.

 'emp_address VARCHAR(20) NOT NULL, '.

 'emp_salary INT NOT NULL, '.

 'join_date timestamp(14) NOT NULL, '.

 'primary key (emp_id))';

 PHP

142

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create table: ' . mysql_error());

 }

 echo "Table employee created successfully\n";

 mysql_close($conn);

?>

In case you need to create many tables, then it’s better to create a text file first and put

all the SQL commands in that text file and then load that file into $sql variable and execute

those commands.

Consider the following content in sql_query.txt file

CREATE TABLE employee(

 emp_id INT NOT NULL AUTO_INCREMENT,

 emp_name VARCHAR(20) NOT NULL,

 emp_address VARCHAR(20) NOT NULL,

 emp_salary INT NOT NULL,

 join_date timestamp(14) NOT NULL,

 primary key (emp_id));

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $query_file = 'sql_query.txt';

 $fp = fopen($query_file, 'r');

 $sql = fread($fp, filesize($query_file));

 fclose($fp);

 PHP

143

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not create table: ' . mysql_error());

 }

 echo "Table employee created successfully\n";

 mysql_close($conn);

?>

Delete MySQL Database Using PHP

Deleting a Database

If a database is no longer required, then it can be deleted forever. You can use pass an

SQL command to mysql_query to delete a database.

Example

Try the following example to drop a database.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'DROP DATABASE test_db';

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not delete database db_test: ' . mysql_error());

 }

 echo "Database deleted successfully\n";

 PHP

144

 mysql_close($conn);

?>

WARNING – It’s very dangerous to delete a database and any table. So before deleting

any table or database you should make sure you are doing everything intentionally.

Deleting a Table

It’s again a matter of issuing one SQL command through mysql_query function to delete

any database table. But be very careful while using this command because by doing so

you can delete some important information you have in your table.

Example

Try the following example to drop a table −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'DROP TABLE employee';

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not delete table employee: ' . mysql_error());

 }

 echo "Table deleted successfully\n";

 mysql_close($conn);

?>

Insert Data to MySQL Database

Data can be entered into MySQL tables by executing SQL INSERT statement through PHP

function mysql_query. Below a simple example to insert a record into employee table.

 PHP

145

Example

Try the following example to insert record into employee table.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'INSERT INTO employee '.

 '(emp_name,emp_address, emp_salary, join_date) '.

 'VALUES ("guest", "XYZ", 2000, NOW())';

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not enter data: ' . mysql_error());

 }

 echo "Entered data successfully\n";

 mysql_close($conn);

?>

In real application, all the values will be taken using HTML form and then those values will

be captured using PHP script and finally they will be inserted into MySQL tables.

While doing data insert its best practice to use function get_magic_quotes_gpc() to

check if current configuration for magic quote is set or not. If this function returns false,

then use function addslashes() to add slashes before quotes.

Example

Try this example by putting this code into add_employee.php, this will take input using

HTML Form and then it will create records into database.

<html>

 PHP

146

 <head>

 <title>Add New Record in MySQL Database</title>

 </head>

 <body>

 <?php

 if(isset($_POST['add'])) {

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 if(! get_magic_quotes_gpc()) {

 $emp_name = addslashes ($_POST['emp_name']);

 $emp_address = addslashes ($_POST['emp_address']);

 }else {

 $emp_name = $_POST['emp_name'];

 $emp_address = $_POST['emp_address'];

 }

 $emp_salary = $_POST['emp_salary'];

 $sql = "INSERT INTO employee ". "(emp_name,emp_address, emp_salary,

 join_date) ". "VALUES('$emp_name','$emp_address',$emp_salary, NOW())";

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not enter data: ' . mysql_error());

 }

 echo "Entered data successfully\n";

 mysql_close($conn);

 }else {

 PHP

147

 ?>

 <form method = "post" action = "<?php $_PHP_SELF ?>">

 <table width = "400" border = "0" cellspacing = "1"

 cellpadding = "2">

 <tr>

 <td width = "100">Employee Name</td>

 <td><input name = "emp_name" type = "text"

 id = "emp_name"></td>

 </tr>

 <tr>

 <td width = "100">Employee Address</td>

 <td><input name = "emp_address" type = "text"

 id = "emp_address"></td>

 </tr>

 <tr>

 <td width = "100">Employee Salary</td>

 <td><input name = "emp_salary" type = "text"

 id = "emp_salary"></td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td> </td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td>

 <input name = "add" type = "submit" id = "add"

 value = "Add Employee">

 </td>

 </tr>

 </table>

 </form>

 PHP

148

 <?php

 }

 ?>

 </body>

</html>

Retrieving Data from MySQL Database

Data can be fetched from MySQL tables by executing SQL SELECT statement through PHP

function mysql_query. You have several options to fetch data from MySQL.

The most frequently used option is to use function mysql_fetch_array(). This function

returns row as an associative array, a numeric array, or both. This function returns FALSE

if there are no more rows.

Following is a simple example to fetch records from employee table.

Example

Try the following example to display all the records from employee table.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_array($retval, MYSQL_ASSOC)) {

 PHP

149

 echo "EMP ID :{$row['emp_id']}
 ".

 "EMP NAME : {$row['emp_name']}
 ".

 "EMP SALARY : {$row['emp_salary']}
 ".

 "--------------------------------
";

 }

 echo "Fetched data successfully\n";

 mysql_close($conn);

?>

The content of the rows are assigned to the variable $row and the values in row are then

printed.

NOTE − Always remember to put curly brackets when you want to insert an array value

directly into a string.

In the above example, the constant MYSQL_ASSOC is used as the second argument to

mysql_fetch_array(), so that it returns the row as an associative array. With an associative

array, you can access the field by using their name instead of using the index.

PHP provides another function called mysql_fetch_assoc() which also returns the row

as an associative array.

Example

Try the following example to display all the records from employee table using

mysql_fetch_assoc() function.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 PHP

150

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_assoc($retval)) {

 echo "EMP ID :{$row['emp_id']}
 ".

 "EMP NAME : {$row['emp_name']}
 ".

 "EMP SALARY : {$row['emp_salary']}
 ".

 "--------------------------------
";

 }

 echo "Fetched data successfully\n";

 mysql_close($conn);

?>

You can also use the constant MYSQL_NUM, as the second argument to

mysql_fetch_array(). This will cause the function to return an array with numeric index.

Example

Try the following example to display all the records from employee table using

MYSQL_NUM argument.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 PHP

151

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_array($retval, MYSQL_NUM)) {

 echo "EMP ID :{$row[0]}
 ".

 "EMP NAME : {$row[1]}
 ".

 "EMP SALARY : {$row[2]}
 ".

 "--------------------------------
";

 }

 echo "Fetched data successfully\n";

 mysql_close($conn);

?>

All the above three examples will produce the same result.

Releasing Memory

It is a good practice to release cursor memory at the end of each SELECT statement. This

can be done by using PHP function mysql_free_result(). Below is the example to show

how it has to be used.

Example

Try the following example.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

 mysql_select_db('test_db');

 PHP

152

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_array($retval, MYSQL_NUM)) {

 echo "EMP ID :{$row[0]}
 ".

 "EMP NAME : {$row[1]}
 ".

 "EMP SALARY : {$row[2]}
 ".

 "--------------------------------
";

 }

 mysql_free_result($retval);

 echo "Fetched data successfully\n";

 mysql_close($conn);

?>

While fetching data, you can write as complex SQL as you like. The procedure will remain

the same as mentioned above.

Using Paging through PHP

It’s always possible that your SQL SELECT statement query may result into thousands of

records. But it is not good idea to display all the results on one page. So we can divide

this result into many pages as per requirement.

Paging means showing your query result in multiple pages instead of just put them all in

one long page.

MySQL helps to generate paging by using LIMIT clause which will take two arguments.

First argument as OFFSET and second argument how many records should be returned

from the database.

Following is a simple example to fetch records using LIMIT clause to generate paging.

Example

Try the following example to display 10 records per page.

<html>

 <head>

 <title>Paging Using PHP</title>

 PHP

153

 </head>

 <body>

 <?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $rec_limit = 10;

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 mysql_select_db('test_db');

 /* Get total number of records */

 $sql = "SELECT count(emp_id) FROM employee ";

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 $row = mysql_fetch_array($retval, MYSQL_NUM);

 $rec_count = $row[0];

 if(isset($_GET{'page'})) {

 $page = $_GET{'page'} + 1;

 $offset = $rec_limit * $page ;

 }else {

 $page = 0;

 $offset = 0;

 }

 $left_rec = $rec_count - ($page * $rec_limit);

 $sql = "SELECT emp_id, emp_name, emp_salary ".

 "FROM employee ".

 "LIMIT $offset, $rec_limit";

 PHP

154

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_array($retval, MYSQL_ASSOC)) {

 echo "EMP ID :{$row['emp_id']}
 ".

 "EMP NAME : {$row['emp_name']}
 ".

 EMP SALARY : {$row['emp_salary']}
 ".

 "--------------------------------
";

 }

 if($page > 0) {

 $last = $page - 2;

 echo "Last 10 Records |";

 echo "Next 10 Records";

 }else if($page == 0) {

 echo "Next 10 Records";

 }else if($left_rec < $rec_limit) {

 $last = $page - 2;

 echo "Last 10 Records";

 }

 mysql_close($conn);

 ?>

 </body>

</html>

Updating Data into MySQL Database

Data can be updated into MySQL tables by executing SQL UPDATE statement through PHP

function mysql_query.

Below is a simple example to update records into employee table. To update a record in

any table it is required to locate that record by using a conditional clause. Below example

uses primary key to match a record in employee table.

 PHP

155

Example

Try the following example to understand update operation. You need to provide an

employee ID to update an employee salary.

<html>

 <head>

 <title>Update a Record in MySQL Database</title>

 </head>

 <body>

 <?php

 if(isset($_POST['update'])) {

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $emp_id = $_POST['emp_id'];

 $emp_salary = $_POST['emp_salary'];

 $sql = "UPDATE employee ". "SET emp_salary = $emp_salary ".

 "WHERE emp_id = $emp_id" ;

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not update data: ' . mysql_error());

 }

 echo "Updated data successfully\n";

 mysql_close($conn);

 }else {

 ?>

 PHP

156

 <form method = "post" action = "<?php $_PHP_SELF ?>">

 <table width = "400" border =" 0" cellspacing = "1"

 cellpadding = "2">

 <tr>

 <td width = "100">Employee ID</td>

 <td><input name = "emp_id" type = "text"

 id = "emp_id"></td>

 </tr>

 <tr>

 <td width = "100">Employee Salary</td>

 <td><input name = "emp_salary" type = "text"

 id = "emp_salary"></td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td> </td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td>

 <input name = "update" type = "submit"

 id = "update" value = "Update">

 </td>

 </tr>

 </table>

 </form>

 <?php

 }

 ?>

 </body>

</html>

 PHP

157

Deleting Data from MySQL Database

Data can be deleted from MySQL tables by executing SQL DELETE statement through PHP

function mysql_query.

Following is a simple example to delete records into employee table. To delete a record

in any table it is required to locate that record by using a conditional clause. Below example

uses primary key to match a record in employee table.

Example

Try the following example to understand delete operation. You need to provide an

employee ID to delete an employee record from employee table.

<html>

 <head>

 <title>Delete a Record from MySQL Database</title>

 </head>

 <body>

 <?php

 if(isset($_POST['delete'])) {

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $emp_id = $_POST['emp_id'];

 $sql = "DELETE employee ". "WHERE emp_id = $emp_id" ;

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not delete data: ' . mysql_error());

 }

 PHP

158

 echo "Deleted data successfully\n";

 mysql_close($conn);

 }else {

 ?>

 <form method = "post" action = "<?php $_PHP_SELF ?>">

 <table width = "400" border = "0" cellspacing = "1"

 cellpadding = "2">

 <tr>

 <td width = "100">Employee ID</td>

 <td><input name = "emp_id" type = "text"

 id = "emp_id"></td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td> </td>

 </tr>

 <tr>

 <td width = "100"> </td>

 <td>

 <input name = "delete" type = "submit"

 id = "delete" value = "Delete">

 </td>

 </tr>

 </table>

 </form>

 <?php

 }

 ?>

 </body>

</html>

 PHP

159

Using PHP to Backup MySQL Database

It is always a good practice to take a regular backup of your database. There are three

ways you can use to take backup of your MySQL database.

 Using SQL Command through PHP.

 Using MySQL binary mysqldump through PHP.

 Using phpMyAdmin user interface.

Using SQL Command through PHP

You can execute SQL SELECT command to take a backup of any table. To take a complete

database dump you will need to write separate query for separate table. Each table will be

stored into separate text file.

Example

Try the following example of using SELECT INTO OUTFILE query for creating table backup

−

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $table_name = "employee";

 $backup_file = "/tmp/employee.sql";

 $sql = "SELECT * INTO OUTFILE '$backup_file' FROM $table_name";

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not take data backup: ' . mysql_error());

 }

 PHP

160

 echo "Backedup data successfully\n";

 mysql_close($conn);

?>

There may be instances when you would need to restore data which you have backed up

some time ago. To restore the backup, you just need to run LOAD DATA INFILE query like

this −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $table_name = "employee";

 $backup_file = "/tmp/employee.sql";

 $sql = "LOAD DATA INFILE '$backup_file' INTO TABLE $table_name";

 mysql_select_db('test_db');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not load data : ' . mysql_error());

 }

 echo "Loaded data successfully\n";

 mysql_close($conn);

?>

Using MySQL binary mysqldump through PHP

MySQL provides one utility mysqldump to perform database backup. Using this binary

you can take complete database dump in a single command.

Example

 PHP

161

Try the following example to take your complete database dump −

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $backup_file = $dbname . date("Y-m-d-H-i-s") . '.gz';

 $command = "mysqldump --opt -h $dbhost -u $dbuser -p $dbpass ". "test_db |
gzip > $backup_file";

 system($command);

?>

Using phpMyAdmin user interface

If you have phpMyAdmin user interface available, then it is very easy for you to take

backup of your database.

To back up your MySQL database using phpMyAdmin click on the "export" link on

phpMyAdmin main page. Choose the database you wish to backup, check the appropriate

SQL options and enter the name for the backup file.

 PHP

162

What is AJAX ?

 AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for

creating better, faster, and more interactive web applications with the help of XML,

HTML, CSS and Java Script.

 Conventional web application transmit information to and from the sever using

synchronous requests. This means you fill out a form, hit submit, and get directed to

a new page with new information from the server.

 With AJAX when submit is pressed, JavaScript will make a request to the server,

interpret the results and update the current screen. In the purest sense, the user would

never know that anything was even transmitted to the server.
For complete learning on AJAX, please refer our AJAX Tutorial.

PHP and AJAX Example

To clearly illustrate how easy it is to access information from a database using Ajax and

PHP, we are going to build MySQL queries on the fly and display the results on "ajax.html".

But before we proceed, let’s do a bit of ground work first. Create a table using the following

command.
NOTE: We are assuming you have sufficient privilege to perform following MySQL

operations

CREATE TABLE `ajax_example` (

 `name` varchar(50) NOT NULL,

 `age` int(11) NOT NULL,

 `sex` varchar(1) NOT NULL,

 `wpm` int(11) NOT NULL,

 PRIMARY KEY (`name`)

)

Now dump the following data into this table using the following SQL statements:

INSERT INTO `ajax_example` VALUES ('Jerry', 120, 'm', 20);

INSERT INTO `ajax_example` VALUES ('Regis', 75, 'm', 44);

INSERT INTO `ajax_example` VALUES ('Frank', 45, 'm', 87);

INSERT INTO `ajax_example` VALUES ('Jill', 22, 'f', 72);

INSERT INTO `ajax_example` VALUES ('Tracy', 27, 'f', 0);

INSERT INTO `ajax_example` VALUES ('Julie', 35, 'f', 90);

 PHP ─ PHP and AJAX

 PHP

163

Client Side HTML file

Now let’s have our client side HTML file which is ajax.html and it will have following code

<html>

<body>

<script language="javascript" type="text/javascript">

<!--

//Browser Support Code

function ajaxFunction(){

 var ajaxRequest; // The variable that makes Ajax possible!

 try{

 // Opera 8.0+, Firefox, Safari

 ajaxRequest = new XMLHttpRequest();

 }catch (e){

 // Internet Explorer Browsers

 try{

 ajaxRequest = new ActiveXObject("Msxml2.XMLHTTP");

 }catch (e) {

 try{

 ajaxRequest = new ActiveXObject("Microsoft.XMLHTTP");

 }catch (e){

 // Something went wrong

 alert("Your browser broke!");

 return false;

 }

 }

 }

 // Create a function that will receive data

 // sent from the server and will update

 // div section in the same page.

 ajaxRequest.onreadystatechange = function(){

 if(ajaxRequest.readyState == 4){

 var ajaxDisplay = document.getElementById('ajaxDiv');

 ajaxDisplay.innerHTML = ajaxRequest.responseText;

 }

 }

 // Now get the value from user and pass it to

 PHP

164

 // server script.

 var age = document.getElementById('age').value;

 var wpm = document.getElementById('wpm').value;

 var sex = document.getElementById('sex').value;

 var queryString = "?age=" + age ;

 queryString += "&wpm=" + wpm + "&sex=" + sex;

 ajaxRequest.open("GET", "ajax-example.php" +

 queryString, true);

 ajaxRequest.send(null);

}

//-->

</script>

<form name='myForm'>

Max Age: <input type='text' id='age' />

Max WPM: <input type='text' id='wpm' />

Sex: <select id='sex'>

<option value="m">m</option>

<option value="f">f</option>

</select>

<input type='button' onclick='ajaxFunction()'

 value='Query MySQL'/>

</form>

<div id='ajaxDiv'>Your result will display here</div>

</body>

</html>

NOTE: The way of passing variables in the Query is according to HTTP standard and the

have formA

URL?variable1=value1;&variable2=value2;

 PHP

165

The above code will produce a screen as given below:

NOTE: This is dummy screen.

Server Side PHP file

So now your client side script is ready. Now we have to write our server side script which

will fetch age, wpm and sex from the database and will send it back to the client. Put the

following code into "ajax-example.php" file

<?php

$dbhost = "localhost";

$dbuser = "dbusername";

$dbpass = "dbpassword";

$dbname = "dbname";

 //Connect to MySQL Server

mysql_connect($dbhost, $dbuser, $dbpass);

 //Select Database

mysql_select_db($dbname) or die(mysql_error());

 // Retrieve data from Query String

$age = $_GET['age'];

$sex = $_GET['sex'];

$wpm = $_GET['wpm'];

 // Escape User Input to help prevent SQL Injection

$age = mysql_real_escape_string($age);

$sex = mysql_real_escape_string($sex);

$wpm = mysql_real_escape_string($wpm);

 //build query

$query = "SELECT * FROM ajax_example WHERE sex = '$sex'";

if(is_numeric($age))

 $query .= " AND age <= $age";

if(is_numeric($wpm))

 $query .= " AND wpm <= $wpm";

 //Execute query

 PHP

166

$qry_result = mysql_query($query) or die(mysql_error());

 //Build Result String

$display_string = "<table>";

$display_string .= "<tr>";

$display_string .= "<th>Name</th>";

$display_string .= "<th>Age</th>";

$display_string .= "<th>Sex</th>";

$display_string .= "<th>WPM</th>";

$display_string .= "</tr>";

// Insert a new row in the table for each person returned

while($row = mysql_fetch_array($qry_result)){

 $display_string .= "<tr>";

 $display_string .= "<td>$row[name]</td>";

 $display_string .= "<td>$row[age]</td>";

 $display_string .= "<td>$row[sex]</td>";

 $display_string .= "<td>$row[wpm]</td>";

 $display_string .= "</tr>";

}

echo "Query: " . $query . "
";

$display_string .= "</table>";

echo $display_string;

?>

Now enter a valid value in "Max Age" or any other box and then click Query MySQL button.

If you have successfully completed this lesson, then you know how to use MySQL, PHP,

HTML, and Javascript in tandem to write Ajax applications.

 PHP

167

XML is a markup language that looks a lot like HTML. An XML document is plain text and

contains tags delimited by < and >. There are two big differences between XML and HTML:

 XML doesn't define a specific set of tags you must use.

 XML is extremely picky about document structure.

XML gives you a lot more freedom than HTML. HTML has a certain set of tags: the

<a> tags surround a link, the <p> starts a paragraph and so on. An XML document,

however, can use any tags you want. Put <rating></rating> tags around a movie rating,

<height></height> tags around someone's height. Thus XML gives you option to device

your own tags.

XML is very strict when it comes to document structure. HTML lets you play fast and loose

with some opening and closing tags. But this is not the case with XML.

HTML list that's not valid XML

Braised Sea Cucumber

Baked Giblets with Salt

Abalone with Marrow and Duck Feet

This is not a valid XML document because there are no closing tags to match up with

the three opening tags. Every opened tag in an XML document must be closed.

HTML list that is valid XML

Braised Sea Cucumber

Baked Giblets with Salt

Abalone with Marrow and Duck Feet

Parsing an XML Document

PHP 5's new SimpleXML module makes parsing an XML document, well, simple. It turns

an XML document into an object that provides structured access to the XML.

To create a SimpleXML object from an XML document stored in a string, pass the string to

simplexml_load_string(). It returns a SimpleXML object.

 PHP ─ PHP and XML

 PHP

168

Example

Try out the following example:

<html>

 <body>

 <?php

 $note=<<<XML

 <note>

 <to>Gopal K Verma</to>

 <from>Sairamkrishna</from>

 <heading>Project submission</heading>

 <body>Please see clearly </body>

 </note>

 XML;

 $xml=simplexml_load_string($note);

 print_r($xml);

 ?>

 </body>

</html>

It will produce the following result:

NOTE: You can use function simplexml_load_file(filename) if you have XML content

in a file.

For a complete detail of XML parsing function, check PHP Function Reference.

 PHP

169

Generating an XML Document

SimpleXML is good for parsing existing XML documents, but you can't use it to create a

new one from scratch.

The easiest way to generate an XML document is to build a PHP array whose structure

mirrors that of the XML document and then to iterate through the array, printing each

element with appropriate formatting.

Example

Try out the following example:

<?php

$channel = array('title' => "What's For Dinner",

 'link' => 'http://menu.example.com/',

 'description' => 'Choose what to eat tonight.');

print "<channel>\n";

foreach ($channel as $element => $content) {

 print " <$element>";

 print htmlentities($content);

 print "</$element>\n";

}

print "</channel>";

?>

It will produce the following result:

<channel>

<title>What's For Dinner</title>

<link>http://menu.example.com/</link>

<description>Choose what to eat tonight.</description>

</channel></html>

 PHP

170

We can imagine our universe made of different objects like sun, earth, moon etc. Similarly,

we can imagine our car made of different objects like wheel, steering, gear etc. In the

same way, there are object oriented programming concepts which assume everything as

an object and implement a software using different objects.

Object Oriented Concepts

Before we go in detail, let’s define important terms related to Object Oriented

Programming.

 Class: This is a programmer-defined datatype, which includes local functions as

well as local data. You can think of a class as a template for making many instances

of the same kind (or class) of object.

 Object: An individual instance of the data structure defined by a class. You define

a class once and then make many objects that belong to it. Objects are also known

as instance.

 Member Variable: These are the variables defined inside a class. This data will be

invisible to the outside of the class and can be accessed via member functions.

These variables are called attribute of the object once an object is created.

 Member function: These are the function defined inside a class and are used to

access object data.

 Inheritance: When a class is defined by inheriting existing function of a parent

class, then it is called inheritance. Here child class will inherit all or few member

functions and variables of a parent class.

 Parent class: A class that is inherited from by another class. This is also called a

base class or super class.

 Child Class: A class that inherits from another class. This is also called a subclass

or derived class.

 Polymorphism: This is an object oriented concept where the same function can

be used for different purposes. For example, function name will remain same but

it may take different number of arguments and can do different task.

 Overloading: a type of polymorphism in which some or all of operators have

different implementations depending on the types of their arguments. Similarly,

functions can also be overloaded with different implementation.

 Data Abstraction: Any representation of data in which the implementation details

are hidden (abstracted).

 Encapsulation: refers to a concept where we encapsulate all the data and member

functions together to form an object.

 PHP ─ Object Oriented Programming

 PHP

171

 Constructor: refers to a special type of function which will be called automatically

whenever there is an object formation from a class.

 Destructors: refers to a special type of function which will be called automatically

whenever an object is deleted or goes out of scope.

Defining PHP Classes

The general form for defining a new class in PHP is as follows:

<?php

class phpClass{

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

}

?>

Here is the description of each line:

 The special form class, followed by the name of the class that you want to define.

 A set of braces enclosing any number of variable declarations and function

definitions.

 Variable declarations start with the special form var, which is followed by a

conventional $ variable name; they may also have an initial assignment to a

constant value.

 Function definitions look much like standalone PHP functions but are local to the

class and will be used to set and access object data.

Example

Here is an example which defines a class of Books type:

<?php

class Books{

 /* Member variables */

 var $price;

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 PHP

172

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

 }

 function getTitle(){

 echo $this->title ."
";

 }

}

?>

The variable $this is a special variable and it refers to the same object, i.e., itself.

Creating Objects in PHP

Once you defined your class, then you can create as many objects as you like of that class

type. Following is an example of how to create object using new operator.

 $physics = new Books;

 $maths = new Books;

 $chemistry = new Books;

Here we have created three objects and these objects are independent of each other and

they will have their existence separately. Next, we will see how to access member function

and process member variables.

Calling Member Functions

After creating your objects, you will be able to call member functions related to that object.

One member function will be able to process member variable of related object only.

Following example shows how to set title and prices for the three books by calling member

functions.

 $physics->setTitle("Physics for High School");

 $chemistry->setTitle("Advanced Chemistry");

 $maths->setTitle("Algebra");

 $physics->setPrice(10);

 $chemistry->setPrice(15);

 $maths->setPrice(7);

Now you call another member functions to get the values set by in above example:

 PHP

173

 $physics->getTitle();

 $chemistry->getTitle();

 $maths->getTitle();

 $physics->getPrice();

 $chemistry->getPrice();

 $maths->getPrice();

This will produce the following result:

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Constructor Functions

Constructor Functions are special type of functions which are called automatically

whenever an object is created. So we take full advantage of this behavior, by initializing

many things through constructor functions.

PHP provides a special function called __construct() to define a constructor. You can

pass as many as arguments you like into the constructor function.

Following example will create one constructor for Books class and it will initialize price and

title for the book at the time of object creation.

function __construct($par1, $par2){

 $this->price = $par1;

 $this->title = $par2;

}

Now we don't need to call set function separately to set price and title. We can initialize

these two member variables at the time of object creation only. Check following example

below:

 $physics = new Books("Physics for High School", 10);

 $maths = new Books ("Advanced Chemistry", 15);

 $chemistry = new Books ("Algebra", 7);

 /* Get those set values */

 $physics->getTitle();

 $chemistry->getTitle();

 PHP

174

 $maths->getTitle();

 $physics->getPrice();

 $chemistry->getPrice();

 $maths->getPrice();

This will produce the following result:

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor

Like a constructor function you can define a destructor function using

function __destruct(). You can release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by using the

extends clause. The syntax is as follows:

 class Child extends Parent {

 <definition body>

 }

The effect of inheritance is that the child class (or subclass or derived class) has the

following characteristics:

 Automatically has all the member variable declarations of the parent class.

 Automatically has all the same member functions as the parent, which (by default)

will work the same way as those functions do in the parent.

Following example inherit Books class and adds more functionality based on the

requirement.

class Novel extends Books{

 var publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

 PHP

175

 function getPublisher(){

 echo $this->publisher. "
";

 }

}

Now apart from inherited functions, class Novel keeps two additional member functions.

Function Overriding

Function definitions in child classes override definitions with the same name in parent

classes. In a child class, we can modify the definition of a function inherited from parent

class.

In the following example, getPrice and getTitle functions are overriden to retrun some

values.

 function getPrice(){

 echo $this->price . "
";

 return $this->price;

 }

 function getTitle(){

 echo $this->title . "
";

 return $this->title;

 }

Public Members

Unless you specify otherwise, properties and methods of a class are public. That is to say,

they may be accessed in three possible situations:

 From outside the class in which it is declared

 From within the class in which it is declared

 From within another class that implements the class in which it is declared

Till now we have seen all members as public members. If you wish to limit the accessibility

of the members of a class, then you define class members as private or protected.

Private members

By designating a member private, you limit its accessibility to the class in which it is

declared. The private member cannot be referred to from classes that inherit the class in

which it is declared and cannot be accessed from outside the class.

A class member can be made private by using private keyword in front of the member.

class MyClass {

 PHP

176

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time an instance of the class is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends, myPublicFunction() will

be visible, as will $driver. The extending class will not have any awareness of or access to

myPrivateFunction and $car, because they are declared private.

Protected members

A protected property or method is accessible in the class in which it is declared, as well as

in classes that extend that class. Protected members are not available outside of those

two kinds of classes. A class member can be made protected by using protected keyword

in front of the member.

Here is different version of MyClass:

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 PHP

177

 }

}

Interfaces

Interfaces are defined to provide a common function names to the implementors. Different

implementors can implement those interfaces according to their requirements. You can

say, interfaces are skeletons which are implemented by developers.

As of PHP5, it is possible to define an interface, like this:

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this:

class Report implements Mail {

 // sendMail() Definition goes here

}

Constants

A constant is somewhat like a variable, in that it holds a value, but is really more like a

function because a constant is immutable. Once you declare a constant, it does not change.

Declaring one constant is easy, as is done in this version of MyClass:

class MyClass {

 const requiredMargin = 1.7;

 function __construct($incomingValue) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

}

In this class, requiredMargin is a constant. It is declared with the keyword const, and

under no circumstances can it be changed to anything other than 1.7. Note that the

constant's name does not have a leading $, as variable names do.

Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare an abstract

class with the keyword abstract, like this:

 PHP

178

When inheriting from an abstract class, all methods marked abstract in the parent's class

declaration must be defined by the child; additionally, these methods must be defined with

the same visibility.

abstract class MyAbstractClass {

 abstract function myAbstractFunction() {

 }

}

Note that the function definitions inside an abstract class must also be preceded by the

keyword abstract. It is not legal to have abstract function definitions inside a non-abstract

class.

Static Keyword

Declaring class members or methods as static makes them accessible without needing an

instantiation of the class. A member declared as static cannot be accessed with an

instantiated class object (though a static method can).

Try out the following example:

<?php

class Foo

{

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

}

print Foo::$my_static . "\n";

$foo = new Foo();

print $foo->staticValue() . "\n";

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from overriding a method

by prefixing the definition with final. If the class itself is being defined final, then it cannot

be extended.

The following example results in Fatal error: Cannot override final method

BaseClass::moreTesting()

<?php

class BaseClass {

 public function test() {

 PHP

179

 echo "BaseClass::test() called
";

 }

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called
";

 }

}

class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called
";

 }

}

?>

Calling parent constructors

Instead of writing an entirely new constructor for the subclass, let's write it by calling the

parent's constructor explicitly and then doing whatever is necessary in addition for

instantiation of the subclass. Here's a simple example:

class Name

{

 var $_firstName;

 var $_lastName;

 function Name($first_name, $last_name)

 {

 $this->_firstName = $first_name;

 $this->_lastName = $last_name;

 }

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name

{

 var $_middleInitial;

 PHP

180

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

In this example, we have a parent class (Name), which has a two-argument constructor,

and a subclass (NameSub1), which has a three-argument constructor. The constructor of

NameSub1 functions by calling its parent constructor explicitly using the :: syntax (passing

two of its arguments along) and then setting an additional field. Similarly, NameSub1

defines its nonconstructor toString() function in terms of the parent function that it

overrides.

NOTE: A constructor can be defined with the same name as the name of a class. It is

defined in above example.

 PHP

181

The simplest way to think of PHP is as interpreted C that you can embed in HTML

documents. The language itself is a lot like C, except with untyped variables, a whole lot

of Web-specific libraries built in, and everything hooked up directly to your favorite Web

server.

The syntax of statements and function definitions should be familiar, except that variables

are always preceded by $, and functions do not require separate prototypes.

Here we will put some similarities and differences in PHP and C

Similarities

 Syntax: Broadly speaking, PHP syntax is the same as in C: Code is blank

insensitive, statements are terminated with semicolons, function calls have the

same structure (my_function(expression1, expression2)), and curly braces ({ and

}) make statements into blocks. PHP supports C and C++-style comments (/* */

as well as //), and also Perl and shell-script style (#).

 Operators: The assignment operators (=, +=, *=, and so on), the Boolean

operators (&&, ||, !), the comparison operators (<,>, <=, >=, ==, !=), and the

basic arithmetic operators (+, -, *, /, %) all behave in PHP as they do in C.

 Control structures: The basic control structures (if, switch, while, for) behave as

they do in C, including supporting break and continue. One notable difference is

that switch in PHP can accept strings as case identifiers.

 Function names: As you peruse the documentation, you.ll see many function

names that seem identical to C functions.

Differences

 Dollar signs: All variables are denoted with a leading $. Variables do not need to

be declared in advance of assignment, and they have no intrinsic type.

 Types: PHP has only two numerical types: integer (corresponding to a long in C)

and double (corresponding to a double in C). Strings are of arbitrary length. There

is no separate character type.

 Type conversion: Types are not checked at compile time, and type errors do not

typically occur at runtime either. Instead, variables and values are automatically

converted across types as needed.

 Arrays: Arrays have a syntax superficially similar to C's array syntax, but they are

implemented completely differently. They are actually associative arrays or hashes,

and the index can be either a number or a string. They do not need to be declared

or allocated in advance.

 No structure type: There is no struct in PHP, partly because the array and object

types together make it unnecessary. The elements of a PHP array need not be of a

consistent type.

 PHP ─ PHP for C Developers

 PHP

182

 No pointers: There are no pointers available in PHP, although the typeless

variables play a similar role. PHP does support variable references. You can also

emulate function pointers to some extent, in that function names can be stored in

variables and called by using the variable rather than a literal name.

 No prototypes: Functions do not need to be declared before their implementation

is defined, as long as the function definition can be found somewhere in the current

code file or included files.

 Memory management: The PHP engine is effectively a garbage-collected

environment (reference-counted), and in small scripts there is no need to do any

deallocation. You should freely allocate new structures - such as new strings and

object instances. IN PHP5, it is possible to define destructors for objects, but there

is no free or delete. Destructors are called when the last reference to an object

goes away, before the memory is reclaimed.

 Compilation and linking: There is no separate compilation step for PHP scripts.

 Permissiveness: As a general matter, PHP is more forgiving than C (especially in

its type system) and so will let you get away with new kinds of mistakes.

Unexpected results are more common than errors.

 PHP

183

This chapter will list out major similarities and differences in between PHP and PERL. This

will help PERL developers to understand PHP very quickly and avoid common mistakes.

Similarities

 Compiled scripting languages: Both Perl and PHP are scripting languages. This

means that they are not used to produce native standalone executables in advance

of execution.

 Syntax: PHP's basic syntax is very close to Perl's, and both share a lot of syntactic

features with C. Code is insensitive to whitespace, statements are terminated by

semicolons, and curly braces organize multiple statements into a single block.

Function calls start with the name of the function, followed by the actual arguments

enclosed in parentheses and separated by commas.

 Dollar-sign variables: All variables in PHP look like scalar variables in Perl: a

name with a dollar sign ($) in front of it.

 No declaration of variables: As in Perl, you don.t need to declare the type of a

PHP variable before using it.

 Loose typing of variables: As in Perl, variables in PHP have no intrinsic type other

than the value they currently hold. You can store either number or string in same

type of variable.

 Strings and variable interpolation: Both PHP and Perl do more interpretation of

double-quoted strings ("string") than of single-quoted strings ('string').

Differences

 PHP is HTML-embedded: Although it is possible to use PHP for arbitrary tasks by

running it from the command line, it is more typically connected to a Web server

and used for producing Web pages. If you are used to writing CGI scripts in Perl,

the main difference in PHP is that you no longer need to explicitly print large blocks

of static HTML using print or heredoc statements and instead can simply write the

HTML itself outside of the PHP code block.

 No @ or % variables: PHP has one only kind of variable, which starts with a dollar

sign ($). Any of the datatypes in the language can be stored in such variables,

whether scalar or compound.

 Arrays versus hashes: PHP has a single datatype called an array that plays the

role of both hashes and arrays/lists in Perl.

 Specifying arguments to functions: Function calls in PHP look pretty much like

subroutine calls in Perl. Function definitions in PHP, on the other hand, typically

require some kind of list of formal arguments as in C or Java which is not the csse

in PERL.

 PHP ─ PHP for PERL Developers

 PHP

184

 Variable scoping in functions: In Perl, the default scope for variables is global.

This means that top-level variables are visible inside subroutines. Often, this leads

to promiscuous use of globals across functions. In PHP, the scope of variables within

function definitions is local by default.

 No module system as such: In PHP there is no real distinction between normal

code files and code files used as imported libraries.

 Break and continue rather than next and last: PHP is more like C language

and uses break and continue instead of next and last statement.

 No elsif: A minor spelling difference: Perl's elsif is PHP's elseif.

 More kinds of comments: In addition to Perl-style (#) single-line comments, PHP

offers C-style multiline comments (/* comment */) and Java-style single-line

comments (// comment).

 Regular expressions: PHP does not have a built-in syntax specific to regular

expressions, but has most of the same functionality in its "Perl-compatible" regular

expression functions.

 PHP

185

Part 3: Function Reference

 PHP

186

PHP is very rich in terms of Built-in functions. Here is the list of various important function

categories. There are various other function categories which are not covered here.

Select a category to see a list of all the functions related to that category.

 PHP Array Functions

 PHP Calendar Functions

 PHP Class/Object Functions

 PHP Character Functions

 PHP Date & Time Functions

 PHP Directory Functions

 PHP Error Handling Functions

 PHP File System Functions

 PHP MySQL Functions

 PHP Network Functions

 PHP ODBC Functions

 PHP String Functions

 PHP SimpleXML Functions

 PHP XML Parsing Functions

Link to other Categories of PHP Functions

 PHP Functions Manual

 PHP ─ Function Reference

http://www.tutorialspoint.com/php/php_array_functions.htm
http://www.tutorialspoint.com/php/php_calendar_functions.htm
http://www.tutorialspoint.com/php/php_class_object_functions.htm
http://www.tutorialspoint.com/php/php_character_functions.htm
http://www.tutorialspoint.com/php/php_date_time_functions.htm
http://www.tutorialspoint.com/php/php_directory_functions.htm
http://www.tutorialspoint.com/php/php_error_handling_functions.htm
http://www.tutorialspoint.com/php/php_file_system_functions.htm
http://in.php.net/manual/en/ref.mysql.php
http://in.php.net/manual/en/ref.network.php
http://in.php.net/manual/en/ref.uodbc.php
http://in.php.net/manual/en/ref.strings.php
http://in.php.net/manual/en/ref.simplexml.php
http://in.php.net/manual/en/ref.xml.php
http://in.php.net/manual/en/funcref.php

